УДК 677.07.017.63

ВЛАГОПОГЛОЩАЮЩИЕ СВОЙСТВА МНОГОСЛОЙНОГО ПОЛОТНА ДЛЯ ФУНКЦИОНАЛЬНОЙ ОДЕЖДЫ

И.В.ФРОЛОВА, И.А.ЧЕБЕРЯК

(Ивановская государственная текстильная академия)

Технология изготовления многослойного полотна, уникального по своим свойствам, была разработана около двадцати лет назад, однако коммерческое применение нашла только в начале XXI века.

Отличительной особенностью этих полотен, ставших новым поколением текстиля, для нашего случая является применение нитей бикомпонентного профиля в одном слое в сочетании с натуральными волокнами во втором слое, где имеются регенерированные волокна, что значительно удешевляет продукцию в виде функциональной одежды и полностью отвечает требованиям стандарта.

Рассмотрим идеализированную модель переноса веществ через поверхность фазового контакта газ – жидкость и воспользуемся положениями пленочной теории [1]. Принимаем, что сопротивление массопотоку у границы раздела фаз сосредоточено в тонких пограничных слоях и что вещества на границе раздела фаз находятся в равновесии (рис.1 – пленочная (послойная волокнистая) модель массопереноса).

Рис.	1

Характеристическое время переноса в слоях II – III намного меньше, чем время переноса по высоте поверхности участка тела человека, поэтому можно рассматривать систему как стационарный процесс (рис.1).

Для зоны I имеем:

$$Q_{A}' = \frac{D_{1}}{\delta_{1}} (C_{1} - C_{1}^{*}),$$
 (1)

где Q_A' – поток компонента в газовой фазе; D_1 – эффективный коэффициент переноса; δ_1 – диффузный слой толщиной δ_1 – плотность потока газа и жидкости (пота) через поверхностный слой к активному волокнистому полотну согласно закону Фика:

$$\sim D_{\rm S} \ \frac{\partial C(0)}{\partial y};$$
 (2)

С₁, С^{*}₁ – концентрация газа и жидкости на границе зоны I.

На границе других зон газ – жидкость происходит скачок концентрации согласно условию равновесия:

$$C_2^* = K_P C_1^*, \qquad (3)$$

где C_2^* , C_1^* – концентрация на границе зон газ – жидкость; K_P – константа равновесия.

В зонах III и IV протекает поглощение газов и паров жидкости с последующей реакцией.

Приведенная скорость реакции определяется уравнением:

$$\omega = K C_A^m C_B^n . \tag{4}$$

Тогда для зоны III получаем систему уравнений массопереноса:

$$\frac{d^{2}C_{A}}{dy^{2}} = m \frac{K}{D_{2}} C_{A}^{m} C_{B}^{n},$$

$$\frac{d^{2}C_{B}}{dy^{2}} = n \frac{K}{D_{3}} C_{A}^{m} C_{B}^{n}$$
(5)

с граничными условиями:

при y = 0
$$C_A = C_2^*$$
; $\frac{dC_B}{dy} = 0$;
при y = $\delta C_A = C_2$; $C_B = C_3$,

где D₂ и D₃ – коэффициенты переноса веществ A и B.

Система уравнений (5) определяет зависимость: $Q''_A(C'_2;C_2;C_3)$, которая может быть представлена в явном виде для двух предельных случаев:

 k = 0 с чисто физическим поглощением (абсорбцией):

$$Q''_{\rm A} = \frac{D_2}{\delta} (C_2^* - C_2').$$
 (6)

2. k $\rightarrow \infty$, когда скорость химической реакции во много раз превышает скорость поглощения, что можно считать обоснованным при наличии в слоях, поглощающих газ – жидкость абсорбента. Тогда ре-

шение находим из чисто физического поглощения вещества A на участке $0 < y < y_0$, а на участке $y_0 < y < \delta_2$ поглощение вещества B (рис.2 – модель решения для активного взаимодействия волокнистыми слоями \rightarrow газ \rightarrow жидкость).

В точке $y = y_0$ происходит взаимодействие реагирующих веществ и образование вещества, значение которого y_0 . Величину поглощения вещества А найдем из соотношения:

$$Q_{A}'' = -\frac{m}{n}Q_{B}; \frac{D_{2}}{y_{0}}C_{2}^{*} = \frac{m}{n}\frac{D_{3}}{\delta_{2} - y_{0}}C_{3};$$
$$y_{0} = \delta_{2}\frac{D_{2}C_{2}}{D_{2}C_{2}^{*} + \frac{m}{n}D_{3}C_{3}}$$
, (7)

$$Q''_{A} = \frac{D_2 C_2^* + \frac{m}{n} D_3 C_3}{\delta_2}.$$
 (8)

C учетом непрерывности потока: $Q'_A = Q''_A = Q_A$.

Полагая $D_1/\delta_1 = K_{\Gamma}; \quad D_2/\delta_2 = K_{\mathfrak{K}},$ найдем:

– при К = 0

$$Q_{A} = \frac{C_{1} - \frac{1}{K_{P}}C_{2}}{\frac{1}{K_{\Gamma}} + \frac{1}{K_{P}K_{\mathcal{K}}}},$$
(9)

- при К $\rightarrow \infty$

$$Q_{A} = \frac{C_{1} + \frac{1}{K_{P}} \frac{m}{n} \frac{D_{3}}{D_{2}} C_{3}}{\frac{1}{K_{\Gamma}} + \frac{1}{K_{P} K_{\mathcal{K}}}}.$$
 (10)

Таким образом, в рамках модели переноса получена зависимость замкнутой системы динамических уравнений из мгновенного материального баланса при рассмотрении элементарного участка ∆х по высоте волокнистых слоев и разделении его на зоны, соответствующие жидкости и газу.

При чисто физическом поглощении уравнение мгновенного материального баланса запишется в виде:

$$\frac{\partial M_{1}}{\partial t} = -\Delta x \frac{\partial}{\partial x} Q_{1} - q_{12} \Delta x;$$

$$\frac{\partial M_{2}}{\partial t} = -\Delta x \frac{\partial}{\partial x} Q_{2} - q_{12} \Delta x$$

$$\left. \right\}, \quad (11)$$

где M_1 , Q_1 – масса и поток компонента в газовой фазе на участке Δx по высоте волокнистых слоев; M_2 , Q_2 – масса и поток компонента в жидкости по высоте волокнистых слоев на участке Δx ; q_{12} – плотность потока компонента, переносимого из газа в жидкость.

Для того, чтобы уравнения (11) представляли замкнутую систему, необходимо выразить Q_1 , Q_2 и q_{12} через M_1 и M_2 .

Допустимую качественную характеристику, задачу у, исключая сложные граничные условия, можно получить в рамках простой модели, рассматривающей распределение свойств гидродинамического процесса только по высоте волокнистого слоя, если предположить, что потоки веществ с достаточной степенью точности можно считать функциями от средних концентраций этих веществ. Тогда уравнения (11) примут вид:

$$\frac{\partial C_1}{\partial t} = -\frac{\partial}{\partial x} Q_1(C_1) - q_{12}(C_1, C_2);$$

$$\frac{\partial C_2}{\partial t} = -\frac{\partial}{\partial x} Q_2(C_2) - q_{12}(C_1, C_2) \bigg\}, \quad (12)$$

где $C_1 = M_1 / \Delta x$; $C_2 = M_2 / \Delta x$.

Кроме концентраций C₁ и C₂ потоки, входящие в уравнение (12), зависят от целого ряда величин, характеризующих гидродинамический и тепловой режим волокнистых слоев. Эти величины в принятой модели должны рассматриваться как параметры, изменение которых вносит возмущение в основную систему динамических уравнений.

На выходе слоистого волокнистого полотна при расчете давления в зоне завихрений будем использовать модель Чэпмена – Корста, которая основывается на предположении, что давление вдали от точки прилипания по потоку равно давлению неподвижной среды на линии раздела.

Давление в зоне смещения принимается равным давлению в зоне завихрений, а на удалении по направлению потока давление принимается равным давлению окружающей среды, существовавшему до появления потока. Тогда:

$$P_{\infty} = P_{td}, \qquad (13)$$

где P_{∞} – давление на бесконечном удалении от точки смещения; P_{td} – стационарное давление по линии раздела.

Давление в зоне завихрений связано с числом Маха на линии раздела соотношением:

$$\frac{P_{b}}{p_{td}} = \left[1 + \frac{y^{*} - 1}{2}M_{a}^{2}\right]^{\nu(v-1)}.$$
 (14)

Выразив равенство (14) функцией скорости на линии раздела и числом Маха, имеем:

$$\frac{P_{b}}{P \infty} = \left[\frac{1 + (1 - u_{0}^{2}u_{1}^{2})^{(\nu-1)/2} M_{1}^{2}}{1 + \frac{\nu-1}{2}M_{1}^{2}}\right]^{\nu/(\nu-1)}, (15)$$

где P_b – давление отрыва; y^* – расстояние по направлению, перпендикулярному основному потоку (размерное); М – число Маха; v – коэффициент теплового расширения; $u = u^*/u_1^*$; $u_1 = u_1^*/v_1$; v_1 – постоянная эталонная скорость (размерная); u_1^* – переменная эталонная скорость ($u_1^* = u^*(x^*)$); u_0' – скорость в центре первоначального потока.

Для малых чисел Maxa получаем приближенный результат:

$$\frac{P_{b}}{P_{\infty}} \approx 1 - M_{1}^{2} u_{0}^{2} u_{1}^{2} , \qquad (16)$$

или

$$\frac{\frac{P_{\infty} - P_0}{1/2} \frac{P_b}{\rho_1^* v_1^2}}{P_{\infty}} = u_0^2 u_1^2.$$
 (17)

Результат для полупотока при смещении по потоку запишется:

$$\frac{\frac{P_{\infty} - P_{b}}{1/2} \frac{P_{b}}{\rho_{1}^{*} \upsilon_{1}^{2}} \frac{P_{b}}{P_{\infty}} \approx 0,35 \left[1 - 0,28 x^{-1/2}\right]^{2}; (18)$$
$$x > 0,487,$$

где ρ_1^* – эталонная плотность; $x = x^*/L$; x^* – расстояние по направлению основного потока (размерное); L – относительная длина.

Для полного потока получаем:

$$\frac{P_{\infty} - P_{b}}{l_{2}^{\prime} \rho_{1}^{*} \upsilon_{1}^{2}} \frac{P_{b}}{P_{\infty}} \approx \frac{4}{9} x^{-\frac{2}{3}} \left[1 - \frac{\kappa^{2} m^{2}}{4} x^{-\frac{2}{3}} \right]^{2} \left[1 + 0,22 x^{-\frac{1}{3}} \right]^{2}; \quad (19)$$
$$x > 0,5; \frac{\kappa m}{2} x^{-\frac{1}{3}} < 1.$$

При смещении против движения как для полного, так и для полупотока имеем:

$$\frac{P_{\infty} - P_b}{\frac{1}{2}\rho_1^* \upsilon_1^2} \frac{P_b}{P_{\infty}} \approx 0,202 \, x^{\frac{2}{3}}.$$
 (20)

Результат справедлив для значений x <0,5 как для полного потока, так и для полупотока, где $\kappa = (C\rho_1^*M_1^*\upsilon_1 L)^{-\frac{1}{2}}$; С – коэффициент пропорциональности; $\frac{M^*}{M_1^*} = C\frac{T^*}{T_1^*}$ (индексом 1 обозначены эта-

лонные величины).

Необходимо заметить, что в этом случае можно написать безразмерное уравнение закона сохранения количества движения:

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\mathbf{u}}{\mathbf{u}_1} \frac{d\mathbf{u}}{d\mathbf{x}} = \mathbf{u}_1 \frac{\partial}{\partial \psi} (\mathbf{u} \frac{\partial \mathbf{u}}{\partial \psi}). \quad (21)$$

В этом случае эталонная вязкость μ_1^* и эталонная температура T_1^* постоянны, безразмерная скорость u_1 становится функцией x.

Тогда результат для полного потока приобретает вполне простой вид, при условии, что первоначальная струя представляет собой поток несжимаемой среды в закрытом канале.

В этом случае:

$$\frac{1}{4}m^2\kappa^2 = 0,162; \ \frac{u_1}{v_0} = 1,45,$$

а х определяется соотношением:

$$x = 2,11 \frac{x^*}{h} Re_h^{-1}$$
. (22)

Графики, построенные по формуле (19), приведены на рис. 3 – давление в зоне завихрений на выходе волокнистого слоя по линии раздела для полного потока, от-куда видно, что экстремум достигается,

когда $\frac{P_b}{P_{\infty}} = \frac{1}{2}$, а для этого случая $\frac{1}{4} m^2 \kappa^2 = 0,162$.

Оценивая полученные числовые результаты, отметим, что половина высоты первоначальной струи h для случая полного потока соответствует перемещению ламинарного пограничного слоя на расстояние x₁.

Тогда результаты для смещения по потоку достоверны, когда струя пройдет расстояние $0,7 x_1$.

В этом месте значение параметра:

$$\left(\frac{P_{\infty}-P_b}{\frac{1}{2}\rho_1^*\upsilon_1^2}\frac{P_b}{P_{\infty}}\right),$$

характеризующего давление в зоне завихрений, на ~ 50% больше параметра, соответствующего асимптотической эпюре в той же точке.

ВЫВОДЫ

При использовании модели в зоне завихрений есть различия: скорость на линии раздела существенно отличается от скорости, соответствующей асимптотическому распределению скоростей в струе, что должно привести к тому, что давление в зоне завихрений будет отличаться от давления, соответствующего прилипанию асимптотической струи.

При полупотоке давление в зоне завихрений меньше тех, которые соответствуют асимптотической эпюре.

В случае полного потока давление в зоне завихрений меньше асимптотических для струй малой длины, однако возрастает для средних значений длины струи и приближается к асимптотическим значениям.

ЛИТЕРАТУРА

1. *Кафаров В.В.* Основы массопередачи. – М.: Высшая школа, 1971.

Рекомендована кафедрой механической технологии текстильных материалов. Поступила 10.01.08.