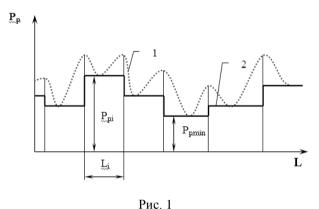
№ 1 (313) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2009

УДК 677.017

ИССЛЕДОВАНИЕ ВЛИЯНИЯ МАСШТАБНОГО ФАКТОРА НА ХАРАКТЕРИСТИКИ ПРОЧНОСТИ ПРЯЖИ

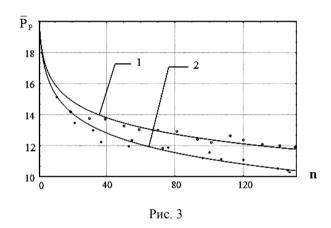
А.А. КУЗНЕЦОВ

(Московский государственный текстильный университет им. А.Н.Косыгина)


Стабильность протекания технологических процессов получения и переработки нитей зависит не только от среднего уровня прочности нитей, но и от гетерогенности данного свойства. Разрывную нагрузку нитей регламентируют соответствующие стандарты, где ее определяют при определенной фиксированной зажимной длине. Однако с изменением зажимной длины меняется и значение разрывной нагрузки. Данная зависимость получила название масштабного эффекта характеристик прочности [1...2].

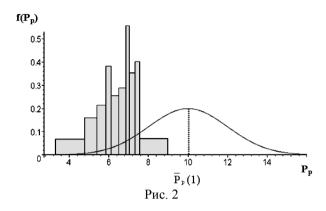
Целью проводимых исследований является разработка научно обоснованных моделей прогноза зависимости разрывной нагрузки пряжи от зажимной длины образца по результатам кратковременных испытаний.

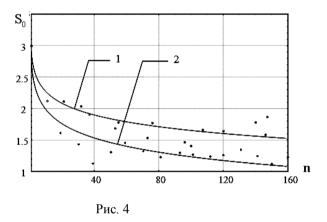
Научная новизна проведенных исследований состоит в использовании метода имитационного моделирования испытаний, применение которого дает возможность представить изучаемый процесс (явление) в целом, найти общие закономерности, а также сделать определенные прогнозы и выводы относительно его физической сущности.


Построение имитационной модели осуществлялось на основе гипотезы "слабого звена" (weak—link). Предполагалось, что каждый j-й образец нити можно представить как некоторую цепь, состоящую из последовательно соединенных участков разной длины L_{ij} и разрывной нагрузки P_{ij} , где j — изменяется от 1 до m (m — число образцов в испытуемой партии), i — от 1 до n

(п — число структурных элементов вдоль нити). Схематическое представление изменения разрывной нагрузки по длине текстильной нити при построении имитационной модели представлено на рис.1.

С помощью программы, реализованной в математической системе "Maple V", сначала осуществлялось моделирование эксперимента по испытанию на разрыв партии из т образцов, состоящих из некоторого числа п структурных элементов с заданными значениями $\bar{P}_p(1)$ и $C_p(1)$ (где $P_p(1), C_p(1)$ – среднее значение разрывной нагрузки и коэффициент вариации по разрывной нагрузке соответственно для образцов, состоящих из одного участка, разрывная нагрузка которого по длине постоянна). В результате имитационного моделирования установлено, что распределение разрывной нагрузки $P_p(n)$ не совпадает с задаваемым законом распределения $\overline{P}_{p}(1)$ $P_{p}(n)$. $C_{p}(n)$ – среднее значение разрывной нагрузки и коэффициент вариации для образцов, состоящих из n участков). Отмечается появление правой асимметрии и сдвига средней разрывной нагрузки в сторону меньших значений. Гистограмма распределения $P_p(n)$ и функция плотности вероятностей значений $P_p(n)$ для образцов c n = 15 , m=100 представлены на рис. 2.


Для выявления влияния зажимной длины L_0 нити на среднее значение разрывной нагрузки P_p проводилось моделирование таких же экспериментов для нитей (волокон) с переменной зажимной длиной L_0 , которая считалась пропорциональной числу п участков цепи [2...3]. Исходными данными при имитационном моделировании являлись: вид и параметры закона распределения разрывной нагрузки для об-



На рис. 3...4 представлены зависимости среднего значения разрывной нагрузки $\overline{P}_P(n)$ (рис.2) и среднеквадратического отклонения (СКО) по разрывной нагрузке $S_0(n)$ (рис.3) от числа элементов n в исследуемом образце нити для различных законов распределения значений разрывной нагрузки ($\overline{P}_P(1) = 20$, $C_P = 15\%$, m = 50, 1 - 100 нормальное распределение, 100 распределение Вейбулла).

Анализ данных зависимостей позволяет отметить, что увеличение количества структурных элементов п приводит к закономерному снижению среднего значения разрывной нагрузки $\stackrel{-}{P}_p$ и ее СКО S_0 . Это объясняется тем, что при увеличении числа участков п увеличивается вероятность появления элемента нити с наименьшей по

разцов, состоящих из одного участка, разрывная нагрузка которого по длине постоянна $P_p(1)$, $C_p(1)$; вид и параметры закона распределения числа участков цепи n и C_n ; число испытываемых образцов m.

абсолютной величине разрывной нагрузкой.

Так как зажимная длина L_0 пропорциональна n, для математического описания результатов моделирования можно предложить математическую модель следующего вида:

$$\overline{P}_{p}(L_{0}) = (\overline{P}_{p}(0) - \overline{P}_{p,cn}) \exp\left(-\frac{L_{0}}{K_{L}}\right) + \overline{P}_{p,cn} \quad (1)$$

где $\overline{P}_p(L_0)$ — среднее значение разрывной нагрузки как функции зажимной длины L_0 ; $\overline{P}_{p.c.}$ — средняя разрывная нагрузка наиболее слабых звеньев испытуемого образца нити; $\overline{P}_p(0)$ — среднее значение разрывной нагрузки в партии образцов, зажимная

длина которой стремится к 0; K_L — параметр модели, определяющий темп уменьшения разрывной нагрузки $P_p(L_0)$ при увеличении зажимной длины.

Параметр K_L имеет размерность длины и характеризует длину образца нити, при которой отношение максимального изменения разрывной нагрузки, вызванное масштабным эффектом, больше текущего изменения разрывной нагрузки в е раз:

$$\frac{\overline{\overline{P}}_{p}(0) \text{-} \overline{\overline{P}}_{p,\text{cm}}}{\overline{\overline{P}}_{p}(K_{_{\rm L}}) \text{-} \overline{\overline{P}}_{p,\text{cm}}} = \frac{\Delta \overline{\overline{P}}_{p,\text{max}}}{\Delta \overline{\overline{P}}_{p,\text{tek}}} = e \, .$$

Темп уменьшения среднего значения разрывной нагрузки P_p и ее СКО S_0 увеличивается при увеличении исходного коэффициента вариации разрывной нагрузки образцов нити $C_p(1)$, состоящих из одного участка. Однако численное значение коэффициента вариации по разрывной нагрузке С_р(n) при увеличении числа участков п остается практически постоянным. Следовательно, отсутствует необходимость в определении математической модели, описывающей изменение СКО от количества структурных элементов в образце нити (зажимной длины) $S_0(L_0)$:

$$C_{P}(L_{0}) = C_{P}(0) = \left[\frac{S_{0}(0)}{\overline{P}_{P}(0)}\right] 100 = \left[\frac{S_{0}(L_{0})}{\overline{P}_{P}(L_{0})}\right] 100.$$
 (2)

Тогда

$$S_0(L_0) = \frac{S_0(0)}{\overline{P}_p(0)} \Bigg[\Big(\overline{P}_p(0) - \overline{P}_{p.c.\pi} \Big) exp \Bigg[- \frac{L_0}{K_L} \Bigg] + \overline{P}_{p.c.\pi} \Bigg],$$

$$S_0(L_0) = \left(S_0(0) - S_{0c\pi}\right) \exp\left[-\frac{L_0}{K_L}\right] + S_{0c\pi}, \tag{3}$$

где $S_{0\text{сл}}$ — среднеквадратическое отклонение по разрывной нагрузке наиболее слабых звеньев испытуемых образцов нитей; $S_0(0)$ — среднеквадратическое отклонение по разрывной нагрузке в партии образцов, зажимная длина которой стремится к 0.

Асимметрия закона распределения, отражающая смещение моды относительно среднего значения, существенно влияет на закономерность уменьшения среднего значения разрывной нагрузки \bar{P}_p и ее СКО S_0 , которое наблюдается при увеличении числа элементов п (зажимной длины образцов). Смещение моды закона распределения в сторону больших значений разрывной нагрузки (закон распределения Вей-

булла) приводит к ослаблению темпа уменьшения среднего значения разрывной нагрузки и СКО по сравнению с симметричным (нормальным) распределением.

С целью экспериментальной проверки предварительных выводов, сформулированных выше, была произведена экспериментальная оценка разрывной нагрузки пряжи различного сырьевого состава при различных зажимных расстояниях. Некоторые результаты данной оценки представлены в табл. 1 (результаты экспериментальной оценки разрывной нагрузки текстильных нитей различного сырьевого состава при исследовании масштабного эффекта прочностных характеристик).

Вид пряжи	Среднее значение \overline{P}_{p} и C_{p} при различных L_{0}					
	L ₀ =0,1 м		L ₀ =0,3 м		L ₀ =0,5 м	
	\overline{P}_p , cH	C _p , %	\overline{P}_p , cH	C _p , %	\overline{P}_p , cH	C _p , %
Хлопчатобумажная пряжа (25 текс)	296,5	6,8	260,1	6,9	258,4	6,4
Льняная пряжа (50 текс)	616,4	12,8	558,5	10,9	508,5	11,0
Шерстяная пряжа (220 текс)	1107,0	9,7	1039,0	9,1	978,0	9,3
Нитроновая пряжа (31 текс×2)	748,7	7,1	688,5	7,7	674,5	8,1

Анализ полученных в табл. 1 результатов показывает закономерное снижение разрывной нагрузки с увеличением зажимной длины, при этом коэффициент вариации по разрывной нагрузке практически остается неизменным. Это свидетельствует о полном соответствии экспериментальных данных основным положениям предварительных выводов, основанных на анализе результатов имитационного моделирования.

Дальнейшие аналитические и экспериментальные исследования [3...4] неравномерности прочностных характеристик текстильных материалов по длине позволили предложить в качестве критерия косвенной оценки дефектности, вызванной неравномерностью прочности по длине образца текстильной нити, относительный показатель неравномерности разрывной нагрузки ψ_{π} (%):

$$\psi_{\text{I}} = \frac{\overline{P}_{\text{p}}(0) - \overline{P}_{\text{p.c.}}}{\overline{P}_{\text{p.c.}}} \cdot 100 = \frac{\Delta \overline{P}_{\text{p.max}}}{\overline{P}_{\text{p.c.}}} \cdot 100, \tag{4}$$

где $\Delta \overline{P}_p$ — максимально возможное изменение среднего значения разрывной нагрузки нити, вызванное масштабным фактором; $\overline{P}_{p,cr}$ — среднее значение разрывной нагрузки нити, определенное в стандартных условиях.

ВЫВОДЫ

В результате проведенных исследований показана возможность использования метода имитационного моделирования полуциклового испытания на растяжение для исследования влияния масштабного эффекта на характеристики прочности пряжи различного сырьевого состава.

ЛИТЕРАТУРА

- 1. Перепелкин К.Е. Дефектность и технологическая работоспособность нитей основные факторы стабильности процессов их получения и переработки // Вестник МГТА. 1994. Вып.1. С.139...151.
- 2. Перепелкин К.Е., Иванцова Т.М., Серков А.Т., Егорова Е.В. Исследование дефектности и неравномерности механических свойств ПАН волокон // Химические волокна – 1989, №1. С.33...34.
- 3. Ольшанский В.И., Кузнецов А.А. Методика оценки показателей неравномерности прочности текстильных нитей по длине.— Витебск: ВГТУ, 2001.
- 4. *Кузнецов А.А., Ольшанский В.И.* Оценка и прогнозирование механических свойств текстильных материалов. Витебск: ВГТУ, 2004.

Рекомендована кафедрой текстильного материаловедения. Поступила 14.01.08.