№ 5 (320) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2009

УДК 677.025:677.022.954/955

ОСОБЕННОСТИ РАСЧЕТА НАТЯЖЕНИЯ НИТИ НА ТРИКОТАЖНЫХ МАШИНАХ С АКТИВНОЙ ПОДАЧЕЙ*

В.В. КАПРАЛОВ, И.Н. СИТНИКОВА, Е.Н. НИКИФОРОВА

(Ивановская государственная текстильная академия)

Режим вязания со стабилизацией скорости обеспечивает сохранение заданной точности длины нити в петле (ДНП) независимо от таких параметров, как глубина кулирования, усилие оттяжки петель, натяжение нити и ее фрикционные свойства. Для относительно нерастяжимых нитей ДНП определяется только скоростью подачи нити. При стабильной скорости вязания даже при варьировании параметров в пределах ± 0.02 мм изменения длины нити в петле не проявляются. Изменение глубины кулирования проявляется в изменении уровня входного натяжения То, однако это не влияет на ДНП. Увеличение усилия оттяжки также приводит к незначительному росту входного натяжения [1].

Для каждого из сечений движущейся растяжимой гибкой нити на основании закона сохранения массы справедливо выражение:

$$dsm = ds_0 m_0 = const, \qquad (1)$$

где ds и m — длина и масса единицы длины нити в деформированном состоянии; ds_0 и m_0 — длина и масса единицы длины нити в свободном состоянии.

При этом

$$\frac{\mathrm{ds}}{\mathrm{ds}_0} = \mathrm{f} \;, \tag{2}$$

где f — функция, учитывающая упругие свойства нити и зависящая от натяжения.

Если материал нити в области деформации подчиняется закону Гука, то функция, характеризующая свойства нити:

$$f = 1 + aT, (3)$$

где T — натяжение нити; a = 1/(ES) — коэффициент растяжимости нити; E — модуль упругости нити; S — площадь поперечного сечения нити.

Длина нити в петле согласно [1] рассчитывается по формуле:

$$\ell = \frac{v_{i}}{1 + \alpha T} \frac{t_{\dot{e}}}{v_{\ddot{o}}}, \tag{4}$$

где ℓ — длина нити в петле; $v_{\scriptscriptstyle H}$ — скорость подачи нити;

$$t_{u}/v_{\ddot{o}} = \tau, \qquad (5)$$

 $^{^*}$ Работа выполнена в рамках инициативного исследовательского проекта, поддержанного региональным конкурсом РФФИ на 2009 год (проект 09-08-97566-р_центр_а).

 τ — время образования одной петли; $t_{\rm u}$ — игольный шаг; $v_{\rm u}$ — линейная скорость цилиндра (для плосковязальных машин — скорость каретки).

Соотношение (4) справедливо для любого сечения движущейся нити.

Поскольку натяжение нити зависит от ее фрикционных свойств, показатель фрикционных свойств μ (коэффициент трения) наряду с коэффициентом растяжимости нити α следует считать одним из наиболее важных среди физикомеханических характеристик нити [2].

На современных трикотажных кругловязальных и плосковязальных машинах используется способ активной подачи нити в зону вязания с применением нитеподающих фурнизеров накопительного типа. Величина натяжения нити на выходе с фурнизера является важнейшей заправочной характеристикой, от которой зависит натяжение нити на иглах вязальных машин в процессе кулирования и возникновение такого отрицательного явления, как перетяжка нити из соседних петель трикотажа.

Однако, если нить при активной подаче наматывается на нитеподающий фурнизер с числом витков 1...n, на первых витках (в зависимости от фрикционных свойств нити, ее растяжимости, входного натяжения и скорости подачи) не избежать проскальзывания нити. Для кругловязальных машин коэффициент проскальзывания k_{np1} нити по поверхности барабанчикафурнизера можно представить так:

$$\mathbf{k}_{\mathrm{i}\,\delta\mathrm{l}} = \mathbf{v}_{\mathrm{\hat{a}}\hat{\mathrm{u}}\,\delta} / \mathbf{v}_{\mathrm{\hat{a}}\dot{\mathrm{a}}\delta} \,, \tag{6}$$

где $v_{\text{бар}}$ — скорость барабанчика-фурнизера; $v_{\text{вых}}$ — скорость подачи нити после нитеподающего фурнизера.

Взяв за основу выражение (4) и приняв в первом приближении, что $v_{вx}=v_{H}$, составим следующее соотношение с учетом (6), справедливое для сечения нити до нитеподающего устройства и для сечения нити на выходе с фурнизера:

$$\frac{v_{\hat{a}\tilde{o}}}{1+\alpha\grave{O}_{\hat{a}\tilde{o}}} = \frac{v_{\hat{a}\hat{u}\tilde{o}}}{1+\alpha\grave{O}_{\hat{a}\hat{u}\tilde{o}}} \frac{v_{\hat{a}\hat{u}\tilde{o}}}{v_{\hat{a}\hat{a}\tilde{o}}}, \quad (7)$$

где $T_{\text{вх}}$ – натяжение нити на входе в фурнизер (после тарельчатого натяжителя); $T_{\text{вых}}$ – натяжение нити после фурнизера.

После несложных преобразований получаем выражение для натяжения нити после нитеподающего фурнизера на кругловязальных машинах:

$$\grave{O}_{\hat{a}\hat{u}\,\tilde{o}} = \frac{\left(1 + \alpha \grave{O}_{\hat{a}\tilde{o}}\right) \frac{V_{\hat{a}\hat{u}\,\tilde{o}}^{2}}{V_{\hat{a}\tilde{o}} V_{\hat{a}\hat{a}\tilde{o}}} - 1}{\alpha}. \tag{8}$$

Уравнение (8) устанавливает зависимость натяжения $T_{\text{вых}}$ кулируемой нити на выходе с барабанчика-фурнизера от натяжения $T_{\text{вх}}$ подаваемой нити, скорости $v_{\text{вх}}$ подачи нити к фурнизеру, скорости $v_{\text{вых}}$ подачи нити от фурнизера к узлу вязания с учетом коэффициента упругости α и коэффициента проскальзывания $k_{\text{пр1}}$. Оно пригодно в случае проскальзывания нити по поверхности фурнизера ($v_{\text{выx}} < v_{\text{бар}}$).

Вычисление диапазонов колебания натяжения нити в случае ее проскальзывания важно для прогнозирования условий активной нитеподачи и изменения входного натяжения нити для предотвращения ее перетяжки, а также при выработке полотен производных переплетений (где размеры петель меняются).

Для экспериментальной оценки скоростей нити до и после нитеподающего фурнизера на кругловязальных машинах марки Мауег & Cie 18 класса использовался немецкий электронный прибор MLT WESCO (фирма Meminger IRO).

Проанализируем процесс изменения натяжения подаваемой нити и ДНП полотна на плосковязальном автомате Stoll CMS-340 TC-KW 11 класса с активной нитеподачей.

В условиях производства вырабатывалось ластичное полотно (Halbinterlok) из шерстяной пряжи 28×2 текс. Замеры натяжения пряжи и ДНП осуществлялись при прямом ходе нитевода (со стороны заправки нити к противоположной стороне игольницы) и обратном. Натяжение пряжи при прямом ходе нитевода составило в среднем 2,5 сH, а при обратном ходе — 1,3 сH. Разница в натяжении объясняется тем,

что при прямом ходе каретка «тянет» нить за собой, а при обратном — нить обгоняет каретку. Скорость подачи нити от фурнизера к узлу вязания при этом составила 122

м/мин, скорость движения каретки — 42 м/мин. Замеры ДНП при различных направлениях движения нитевода сведены в табл. 1.

Таблипа 1

Направление хода нитевода	ДНП (ℓ) ластичного полотна (Halbinterlok), мм										Среднее значение ДНП
Прямое	7,1	6,9	7,1	7,2	7,0	7,1	6,9	6,9	7,1	7,0	7,0
Обратное	7,5	7,1	7,2	7,2	7,4	7,2	7,3	7,5	7,5	7,2	7,3

Опытным путем установлено, что при изменении входного натяжения нити (в случае реверсивного движения каретки) происходит изменение ДНП в пределах 4%. При этом изменение натяжения достигает 48% (1,3...2,5 сН).

На основе практических данных преобразуем выражение (6), прибавляя к скорости $v_{вых}$ нити скорость $v_{кар}$ движения каретки при ее прямом ходе и вычитая скорость каретки при обратном. Таким образом, коэффициент проскальзывания $k_{пр2}$ нити, справедливый для плосковязальных машин, запишется следующим образом:

$$k_{\text{пр2}} = (\nu_{\text{вых}} \pm \nu_{\text{кар}}) / \nu_{\text{бар}}. \tag{9} \label{eq:knp2}$$

Тогда натяжение нити после нитеподающего фурнизера на плосковязальных машинах и автоматах равно:

$$\grave{O}_{\hat{a}\hat{u}\,\tilde{o}} = \frac{\left(1 + \alpha \grave{O}_{\hat{a}\tilde{o}}\right) \frac{\smash{v_{\hat{a}\hat{o}}^2 \pm v_{\hat{e}\hat{a}\hat{o}} \, v_{\hat{a}\hat{u}\,\tilde{o}}}}{\smash{v_{\hat{a}\hat{o}} \, v_{\hat{a}\hat{a}\hat{o}}}} - 1}{\alpha} \,. \quad (10)$$

ВЫВОДЫ

- 1. Получено выражение для расчета натяжения кулируемой нити на выходе с барабанчика-фурнизера кругловязальных машин с учетом коэффициента проскальзывания нити по поверхности нитеподающего фурнизера, позволяющее рационально подойти к выбору условий заправки.
- 2. Для прогнозирования условий активной нитеподачи на плосковязальных машинах, в том числе регулирования входного натяжения нити, получено уравнение натяжения нити после нитеподающего фурнизера, учитывающее направление движения каретки.

ЛИТЕРАТУРА

- 1. *Цитович И.Г.* Технологическое обеспечение качества и эффективности процессов вязания поперечновязаного трикотажа. М.: Легпромбытиздат, 1992.
- 2. *Buhle*, *G*. Einflusse auf den Schraglauf von Maschenwaren in Rechts- Links- Bindungen/ G. Buhler, W. Haussler [Tekct] // Wirkerei und Strickerei Technik. 1985, № 7, S. 610...613.

Рекомендована кафедрой начертательной геометрии и черчения. Поступила 25.05.09.