№ 5 (320) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2009

УДК 697.922

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ЗВУКОИЗОЛЯЦИИ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ТРИКОТАЖНЫХ МАШИН

Б.С.САЖИН,О.С.КОЧЕТОВ, О.В.КОМАРОВА, М.А.АПАРУШКИНА

(Московская государственная текстильная академия им. А.Н. Косыгина)

Наиболее эффективным конструктивным методом борьбы с шумом чулочноносочных автоматов является метод звукоизоляции рабочего цилиндра и его привода как одних из главных источников шума этих машин [1].

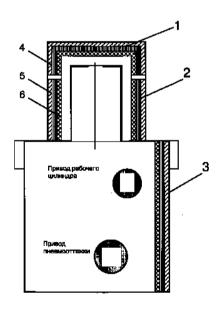


Рис. 1

На рис.1 приведена схема расположения кожухов и экранов на ЧНА Гамма-105: 1 — сверху рабочего цилиндра; 2 — по периметру рабочего цилиндра; 3 — экран в зоне привода; 4 — звукоизолирующий лист

металла; 5 – вибродемпфирующий материал; 6 – звукопоглотитель. Кожух для рабочего цилиндра имеет габаритные размеры 400×300×480 мм. Он выполнен негерметичным [2] и имеет технологические отверстия для предотвращения перегрева и удобства обслуживания. Между верхним кожухом 1 и кожухом 2, идущим по периметру рабочего цилиндра, предусмотрены два технологических отверстия размером 400×60 мм. В зоне привода рабочего цилиндра и системы пневмооттяжки изделий предусмотрен шумопоглощающий экран 3. Каждое из вышеперечисленных ограждений выполнено из металлического листа 4 толщиной 1,5 мм, на который нанесен слой вибродемпфирующего материала 5 и звукопоглощающего 6. Для данного кожуха из конструктивных соображений были использованы шумопоглощающие панели по ТУ 38105674-80, состоящие из слоя битума в качестве вибродемпфирующего материала и слоя из нетканного материала, выполняющего функции звукопоглотителя. Подбор параметров и расчет основных геометрических размеров кожуха выполнялся на ПЭВМ.

Расчет звукоизоляции кожуха проводился как для негерметичных ограждений [3] по следующей зависимости:

$$R_{\hat{e}\hat{\imath} \cdot \alpha \cdot \delta \delta} \leq R_{si} - 10 \lg \left(\frac{\sqrt{1-\alpha} + \frac{\sum \tau_{i} S_{0i}}{\sum S_{i}} \cdot 10^{0,lRsi}}{\alpha + \frac{\sum \tau_{i} S_{0i}}{\sum S_{i}} + (\sqrt{1-\alpha}) \cdot 10^{-0,lRsi}} \right), \tag{1}$$

где $R_{\text{кож.тр}}$ -требуемая звукоизоляция кожуха, дБ, определяемая по формуле

$$R_{\text{кож-тр}} = L_i - L_{\text{доп}} + 5, \qquad (2)$$

 L_i — октавный уровень звукового давления в расчетной точке от одиночно работающей изолируемой машины, дБ (например, для т.3 это будет L_3); $L_{\text{доп}}$ — допустимый по нормам уровень звукового давления в расчетной точке, дБ; R_{si} — средняя звукоизоляция сплошной части ограждений і-го кожуха, дБ; α — реверберационный коэффициент звукопоглощения внутри і-го кожуха; τ_i — энергетический коэффициент прохождения звука через глушитель технологического отверстия. Для простого

отверстия $\tau_i = 1$ (простым отверстием считается отверстие без глушителя шума, как в нашем случае); ΣS_{oi} — суммарная площадь технологических отверстий для i-го кожуха машины,м², то есть

$$\sum S_{oi} = 2 \times 0, 4 \times 0, 06 = 0,024 \text{m}^2;$$

 ΣS_i – суммарная площадь сплошной части ограждения, м², определяемая по формуле

$$\sum S_{i} = 2(\ell_{i}b_{i} + b_{i}h_{i} + \ell_{i}h_{i}) - \sum S_{oi}, (3)$$

 ℓ_i, b_i, h_i — соответственно длина, ширина и высота і-го кожуха, м; для нашего случая она равна:

$$\sum S_i = 2(0,4 \times 0,3 + 0,3 \times 0,48 + 0,4 \times 0,48) - 0,024 = 0,912m^2.$$

Результаты акустических исследований кожуха ЧНА типа Гамма-105 на скоростных режимах 410 об/мин представлены на рис. 2.

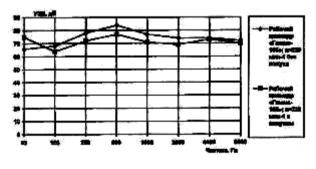


Рис. 2

Величина реверберационного коэффициента звукопоглощения внутри ограждения определяется по формуле [4]:

$$\alpha = \frac{\alpha_o \left(\sum S_i - \sum S_i\right) + \alpha_i \sum S_i}{\sum S_i}, (4)$$

где α_{o} — реверберационный коэффициент звукопоглощения для ограждений без звукопоглощающего материала; $\alpha_{\rm M}$ — реверберационный коэффициент звукопоглощения звукопоглощающего материала; $\Sigma S_{\rm M}$ — площадь нанесения звукопоглощающего материала, m^{2} ; для нашего случая

$$\sum S_i = 0.912 - 0.024 = 0.888 i^{-2}$$
.

Средняя звукоизоляция сплошной части ограждений, дБ, при наличии вибрационных нагрузок на элементы кожуха рассчитывается по формуле

$$R_{si} = R_i K + 10 \lg \frac{\eta}{\eta_o}, \qquad (5)$$

где R_i — звукоизоляция материала ограждения, дБ; K — коэффициент, учитывающий снижение звукоизоляции материала ограждений при действующем вибрационном возбуждении; η — коэффициент потерь

конструкций кожухов со средствами вибропоглощения и вибродемпфирования; $\eta_{\rm o}$ — коэффициент потерь конструкций кожухов, не снабженных средствами вибропоглошения.

Результаты расчета эффективности представлены в табл. 1 (расчетная эффективность звукоизолирующего ограждения рабочего цилиндра ЧНА Гамма-105 при скорости 220 мин⁻¹).

Таблица 1

№	Расчетные формулы	Среднегеометрическая частота октавных полос, Гц							
		63	125	250	500	1000	2000	4000	8000
1	L ₃ , дБ	72	72	80	85	84	83	81	82
2	L _{доп} , дБ	95	87	82	78	75	73	71	69
8	R_{si} = R_iK + $10lg(\eta/\eta_o)$, дБ	4,8	9,9	12,3	16	21,7	21	21	14,5
12	R _{кож. расч} , дБ	0,12	3,45	6,2	11,3	14,7	15	15	13,8
13	L ₃ - R _{кож. расч} , дБ	71,9	68,6	73,8	73,7	69,3	68	66	68,2

В экспериментальном цехе СКТБ ЧА (г.Тула) были проведены исследования виброакустической активности чулочноносочных автоматов Гамма-105 при скорости 220 мин⁻¹ и Гамма-209М при скорости 160 мин⁻¹. При испытаниях использовалась аппаратура фирмы Брюль и Къер (Дания): микрофон 4131, шумомер 2203, октавные фильтры 1613. Регистрировались уровни звукового давления на расстоянии 1 м от пульта управления на круговом и реверсивном ходах, а также определялись акустические характеристики аэродинамических глушителей шума привода пневмооттяжки изделий.

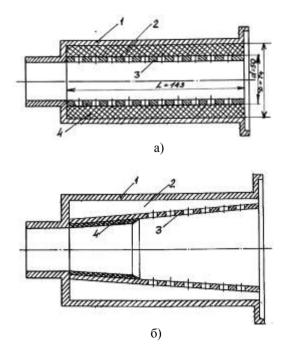


Рис. 3

На рис. 3 представлены схемы испытываемых аэродинамических глушителей шума привода пневмооттяжки изделий: а) — экспериментальный глушитель шума резонансного типа (1 — корпус глушителя, 2 — резонансная камера, 3 — перфорированная вставка, 4 — звукопоглотитель); б) — экспериментальный глушитель шума комбинированного типа (1 — корпус глушителя, 2 — резонансная камера, 3 — перфорированный конфузор, 4 — звукопоглотитель).

На рис. 4 представлены уровни звукового давления на расстоянии 1 м от вентилятора ЧНА Гамма: 1 – с серийным глушителем, 2 – с экспериментальным глушителем многокамерного типа, 3 – с глушителем резонансного типа.

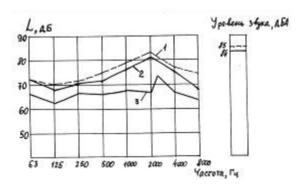


Рис. 4

Анализируя полученные результаты, можно сделать вывод о том, что эффективность разработанного звукоизолирующего кожуха для машин серии Гамма проверялась на ЧНА Гамма-209М и Гамма-105 соответственно при скоростях 160 и

220 об/мин, при этом снижение шума этих машин с помощью кожуха происходит в разных частотных областях спектра.

Так, например, у ЧНА Гамма-105 наибольшая эффективность наблюдается в области 250...2000 Гц, а у Гамма-209М — в области частот 500...8000 Гц. Это можно объяснить, во-первых, разными рабочими скоростями, а во-вторых, технологическими особенностями этих машин. Результаты испытаний аэродинамических глушителей шума показали, что эффективность разработанных конструкций в требуемом диапазоне частот составляет порядка 12...15 дБ.

ВЫВОДЫ

1. Разработана методика расчета звукоизолирующих ограждений для чулочноносочных автоматов как негерметичных ограждений с учетом технологических отверстий. 2. Спроектировано и испытано звукоизолирующее ограждение для рабочего цилиндра ЧНА, эффективность которого в полосе частот 500...8000 Гц составляет 7...9 дБ, а по уровню звука 5 дБА.

ЛИТЕРАТУРА

- 1. *Кочетов О.С. и др.* // Изв. вузов. Технология текстильной промышленности. 1995, № 5.
- 2. А.с. №1388484.Ограждение веретен текстильной машины// Кочетов О.С. и др. Опубл. 1988. Бюл. №14.
- 3. РТМ 27-60-1075-85.Проектирование звукозащитных ограждений полиграфических машин. – М.: Минлегпищемаш, 1985.
- 4. Руководство по расчету и проектированию шумоглушения в промышленных зданиях. М.: Стройизлат. 1982.
- 5. СН N3223-85.Санитарные нормы допустимых уровней шума на рабочих местах. М.:ГСЭУ, 1988

Рекомендована кафедрой процессов и аппаратов химической технологии и безопасности жизнедеятельности. Поступила 18.02.08.

№ 5 (320) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2009