УДК 687.03

ОСОБЕННОСТИ КИНЕТИКИ СЖАТИЯ ОБЪЕМНОГО НЕСВЯЗНОГО УТЕПЛИТЕЛЯ

И.Ю. БРИНК, С.Н. СЕРГЕЕНКО, А.С. РУКАВИШНИКОВА

(Ростовский институт сервиса (филиал) Южно-Российского государственного университета экономики и сервиса)

В последнее десятилетие большое распространение в качестве утеплителя при изготовлении теплозащитной одежды получили натуральные (перо-пуховая смесь водоплавающей птицы) и синтетические (hollowfiber, fibertech и др.) несвязные объемные утеплители. Использование перопуховой смеси обусловлено ее высокими теплоизоляционными и гигиеническими

свойствами, экологичностью, длительным сроком эксплуатации, малой массой. Степень теплоизоляции несвязных объемных утеплителей зависит, при прочих равных условиях, от объемной плотности материалов [1...3].

В процессе эксплуатации отдельные участки одежды подвергаются внешним силовым воздействиям, в том числе воз-

действию ветровой нагрузки, приводящим к сжатию материалов и уменьшению толщины утепляющего материала, его перераспределению, снижению теплоизолирующей способности одежды.

Изменение объемной плотности утеплителя зависит от его реологических свойств, напряженно-деформированного состояния и времени действия нагрузки. В общем случае величина напряжения σ определяет значение не только деформации ε , но и скорости деформации ε _v [1...3].

Увеличение о приводит к повышению объемной массы. При давлениях менее 200 Па и времени 5..180 с несвязный объемный утеплитель можно рассматривать как упругое тело [4]. Закономерности сжатия несвязного утеплителя существенно зависят от вида материала. При этом наблюдаются не только упругая деформация, но и пластичная [3].

Цель настоящей работы заключается в установлении зависимости влияния времени нагружения и давления на изменение объема и определение реологических свойств объемных несвязных утепляющих материалов.

В процессе эксперимента в качестве исследуемого объемного утеплителя использовали гусиный пух (96% – пух, 4% –

мелкое перо, показатель F.P.=800), обеспечивающий высокое качество изделия [1...3].

Выбор массы образца проводили на основании предварительных экспериментальных исследований плотности перопуховой смеси при различных $\sigma_{cж}$.

Давление одностороннего сжатия $\sigma_{cж}$ может быть определено с учетом потерь, связанных с неоднородностью распределения плотности σ_i , потерь на трение σ_f и давления уплотнения σ_v :

$$\sigma_{cx} = \sigma_i + \sigma_f + \sigma_v = \sigma_{nor} + \sigma_v$$
, (1)

где
$$\sigma_{\text{пот}} = \sigma_{\text{i}} + \sigma_{\text{f}}$$
 .

При оптимальных значениях массы m=1,5 г (объем -1,43 л) исследуемого образца, представленных в табл. 1, наблюдаются максимальные значения плотности ρ_{max} , а потери, связанные с неоднородностью распределения плотности и трения, принимают минимальное значение. Увеличение абсолютных значений напряжения увеличивают абсолютные значения деформации восстановления ε_{Boc} . Для оптимального значения массы исследуемого образца, можно принять $\sigma_{cж} \approx \sigma_{v}$.

Таблица 1

Масса об- разца, г	Показа- тель	Плотность ρ_{max} , потери σ_{not} и деформация восстановления $\epsilon_{вос}$						
		при различных давлениях сжатия σ_{cw} , Па						
		-41	-83	-124	-165	-248	-330	-413
0,5	ρ_{max}	4,68	7,01	10,52	11,08	12,03	14,03	16,84
	σ_{not}	0,07	0,10	0,20	0,35	0,56	0,52	0,39
	$\varepsilon_{ ext{BOC}}$	-0,06	-0,22	-0,20	-0,20	-0,29	-0,42	-0,53
1,0	ρ_{max}	3,24	4,68	7,01	8,42	12,03	16,84	21,04
	σ_{not}	0,13	0,20	0,30	0,35	0,60	0,53	0,49
	$\mathcal{E}_{\mathrm{BOC}}$	-0,04	-0,12	-0,20	-0,24	-0,26	-0,30	-0,31
1,5	ρ_{max}	3,37	4,95	8,15	11,48	14,85	18,04	22,15
	σ_{not}	0,08	0,09	0,18	0,28	0,53	0,47	0,38
	ϵ_{Boc}	-0,05	-0,19	-0,25	-0,29	-0,37	-0,41	-0,45
2,0	$ ho_{max}$	2,51	6,01	8,02	10,86	12,95	16,84	21,31
	σ_{not}	0,16	0,36	0,40	0,48	0,70	0,66	0,61
	$\epsilon_{ ext{BOC}}$	-0,02	-0,38	-0,38	-0,45	-0,51	-0,51	-0,51
2,5	$ ho_{max}$	2,60	5,13	6,58	8,77	13,15	17,54	19,31
	σ_{not}	0,17	0,32	0,41	0,60	1,00	0,93	0,84
	$\mathcal{E}_{ ext{BOC}}$	-0,02	-0,34	-0,41	-0,43	-0,48	-0,51	-0,53

Методика проведения исследования включала построение экспериментальных зависимостей $\varepsilon_v(t, \sigma_{cж})$ и $\rho(t, \sigma_{cж})$; определение предельных значений времени $t_{\text{пред}}$, объемной деформации ϵ_{v} пред, плотности рпред, сигмоидальной зависимости и ее параметров для предельных значений; логистического уравнения $\varepsilon_v = f(t)$; зависимости параметров логистического уравнения $\varepsilon_v = f(t)$ от сжимающего напряжения σ_{cx} ; параметров зависимости $\varepsilon_v = f(\sigma, t)$; скорости деформации є путем дифференцирования зависимости $\varepsilon_v = f(\sigma, t)$; построение 3D моделей $\dot{\varepsilon}_v(\sigma_{cx}, t)$ и $\sigma_{cx}(\dot{\varepsilon}_v, \varepsilon_v)$; определение коэффициента кажущейся объемной вязкости η_v^* ; вывод уравнения описания ползучести объемного утеплителя и установление его коэффициентов.

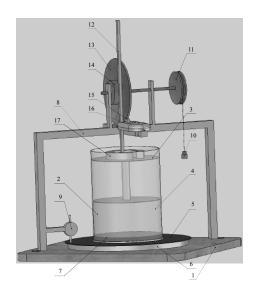


Рис. 1

Для проведения испытаний была разработана и изготовлена экспериментальная установка, реализующая метод одноосного сжатия. Разработанное устройство (рис. 1) состоит из основания 1; подвижного цилиндра 2 с рабочим объемом 0,0014м³ (1,43л); подвижного нагружающего поршня 3; основания цилиндра 5; измерительной шайбы 6 из связного утеплителя типа "синтепон"; опорной площадки 7, жестко закрепленной на основании рамы 8; измерительного прибора в виде микрометра; противовеса 10 и его ролика 11; измерительного устройства, включающего в себя измерительную планку 12, жестко закрепленную на поршне 3; роликов 13 и 14; датчика перемещения 15, соединенного с компьютером 16.

Технология проведения исследований включала: тарировку синтепоновой шайбы для определения потерь в процессе испытаний; загрузку пуха в цилиндр, нагружение заданными усилиями (0,5; 1,0; 1,5; 2,0; 3,0; 4,0; 5,0; 10; 20; 25 Н) путем установки груза 17, определение времени при фиксированных перемещениях (2 мм).

Результаты экспериментальных исследований сводили в таблицу, содержащую значения времени Δt через фиксированную высоту Δh .

Расчет текущей высоты образца, высотной логарифмической (истинной) деформации ϵ_h и значений плотности материала ρ_i осуществляли с помощью разработанной компьютерной программы с учетом насыпной высоты h_0 , массы образца $m_{\text{обр}}$ и груза $M_{\text{гр}}$:

$$h_i = h_0 - \Delta h \,, \tag{2}$$

$$\varepsilon_{h} = \ln \left(\frac{h_{i}}{h_{0}} \right), \tag{3}$$

при этом $\varepsilon_h = \varepsilon_v$,

$$\rho_{i} = \frac{4m_{o\delta p}}{\pi D^{2}h_{i}}.$$
 (4)

На основании проведенных экспериментов были установлены основные закономерности деформации при сжатии объемного утеплителя.

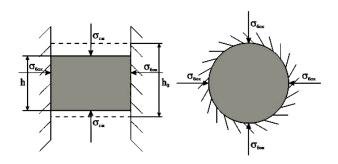


Рис. 2

Напряженно-деформационное состояние объемного утеплителя (рис. 2 – схема

сжатия несвязного объемного утеплителя) в процессе сжатия в жестком цилиндре при отсутствии радиальной деформации и без учета сил трения описывается тензорами

напряжений T_{σ} и деформаций T_{ε} , средней деформации є ср, девиаторами тензоров напряжения D_{σ} и деформации D_{ϵ} .:

$$T_{\sigma} = \begin{vmatrix} -\sigma_{\text{бок}} & 0 & 0 \\ 0 & -\sigma_{\text{бок}} & 0 \\ 0 & 0 & -\sigma_{\text{cж}} \end{vmatrix} = -\sigma_{\text{cж}} \begin{vmatrix} \kappa_{\text{бок}} & 0 & 0 \\ 0 & \kappa_{\text{бок}} & 0 \\ 0 & 0 & 1 \end{vmatrix}, \tag{5}$$

где
$$\kappa_{_{\text{бок}}} = \frac{\sigma_{_{\text{бок}}}}{\sigma_{_{_{\text{CK}}}}}$$
 — коэффициент бокового

давления; $\sigma_{\text{бок}} = \kappa_{\text{бок}} \sigma_{\text{сж}}$ — боковое давление.

$$T_{\varepsilon} = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \varepsilon_{h} \end{vmatrix}, \tag{6}$$

где
$$\epsilon_{_h} = ln \left(\frac{h_{_i}}{h_{_0}} \right) \le 0$$
 — высотная деформа-

ция; h_0 , h_i – исходная и текущая высота образца соответственно.

Объемная деформация определяется как сумма диагональных членов тензора деформаций Т_є:

$$\varepsilon_{v} = 0 + 0 + \varepsilon_{h} = \varepsilon_{h}, \qquad (7)$$

$$\varepsilon_{\rm cp} = \frac{1}{3} \varepsilon_{\rm v} \,. \tag{8}$$

Изотропные части тензоров напряжения T_{σ} и деформации T_{ϵ} записываем в ви-

$$T_{\sigma}^{v} = \begin{vmatrix} \sigma_{cp} & 0 & 0 \\ 0 & \sigma_{cp} & 0 \\ 0 & 0 & \sigma_{cp} \end{vmatrix}, \qquad (9)$$

$$T_{\varepsilon}^{v} = \begin{vmatrix} \varepsilon_{cp} & 0 & 0 \\ 0 & \varepsilon_{cp} & 0 \\ 0 & 0 & \varepsilon_{cp} \end{vmatrix}, \qquad (10)$$

$$T_{\varepsilon}^{v} = \begin{vmatrix} \varepsilon_{cp} & 0 & 0 \\ 0 & \varepsilon_{cp} & 0 \\ 0 & 0 & \varepsilon_{cp} \end{vmatrix}, \tag{10}$$

где $\sigma_{\rm cp} = -\frac{1}{2}\sigma_{\rm cm}(2\kappa_{\rm бок} + 1)$ – среднее напряжение σ_{cp} (при $\kappa_{\text{бок}} \cong 1$, $\sigma_{cp} \cong \sigma_{cm}$).

$$D_{\sigma} = (T_{\sigma} - T_{\sigma}^{v}), \qquad (11)$$

$$D_{c} = (T_{c} - T_{c}^{v}).$$
 (12)

Для линейно-упругого тела реологические уравнения записываются в виде [5]:

$$D_{\sigma} = 2GD_{\varepsilon}, \qquad (13)$$

$$T_{\sigma}^{v} = 3kT_{s}^{v}, \qquad (14)$$

$$\sigma_{\rm cn} = k \varepsilon_{\rm v}$$
, (15)

где G – модуль сдвига; k – коэффициент сжимаемости.

Для линейного вязкого тела [5]:

$$D_{\sigma} = 3\eta D_{\dot{\varepsilon}}, \qquad (16)$$

$$T_{\sigma}^{v} = 3kT_{\epsilon}^{v} + 3\eta_{v}T_{\dot{\epsilon}}^{v}, \qquad (17)$$

$$\sigma_{cp} = k\varepsilon_v + \eta_v \dot{\varepsilon}_v, \qquad (18)$$

 η_{v} – коэффициент объемной вязкости; $\dot{\epsilon}_{v} = \frac{d(\epsilon_{v})}{At}$ – скорость объемной деформации; D_{ϵ} , T_{ϵ} – девиатор и изотропная часть тензора скорости деформации.

Сжатие объемного несвязного утеплителя характеризуется упругими и пластическими деформациями, зависящими от времени. В общем случае закономерности деформации могут носить нелинейный характер.

Описание результатов исследования влияния скорости объемной деформации $\acute{\epsilon}_{v}$ на напряжение осж осуществляли с помощью коэффициента кажущейся объемной вязкости η_v :

$$\eta_{v}^{*} = \frac{\sigma_{c*}}{\dot{\varepsilon}_{v}}.$$
 (19)

ВЫВОДЫ

Разработана методика и экспериментальная установка для исследования кинетики процессов сжатия несвязного объемного утеплителя, позволяющая определить время при фиксированных значениях объемной деформации и нагрузки.

ЛИТЕРАТУРА

1. *Бринк И.Ю., Лебедева Е.О.* Исследование воздействия ветра на пакеты теплозащитной одежды при ветровой нагрузке // Швейная промышленность. -2005, №3. С.34...36.

- 2. *Бекмурзаев Л.А.* Проектирование изделий с объемными материалами: Монография. Шахты: ЮРГУЭС, 2001.
- 3. *Балясов П.Д*. Сжатие текстильных волокон в массе и технология текстильного производства: Монография. М.: Легкая индустрия, 1975.
- 4. Сергеенко С.Н.и др. Исследование одноосного сжатия // Материаловедение. -2003, №1. С.16...21.
- 5. *Рейнер М*. Деформация и течения. Введение в реологию. М.: Гос. науч.-техн. изд. нефтяной и горно-топливной литературы, 1963.

Рекомендована кафедрой моделирования, конструирования и технологии швейных изделий. Поступила 30.05.07.