№ 2 (314) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2009

УДК 687.016

ТЕХНОЛОГИЯ РЕКОНСТРУКЦИИ ВИРТУАЛЬНЫХ СКАНИРОВАННЫХ ФИГУР

ЛИ ЮЕ, ВАН СЯОГАН, В.Е.КУЗЬМИЧЕВ

(Ивановская государственная текстильная академия, Уханьский университет науки и технологии)

В настоящее время системы трехмерного (3D) сканирования являются самыми совершенными средствами для антропометрических измерений. Они пришли на смену методу фотограмметрии неподвижных фигур неподвижными камерами и превзошли их по целому комплексу показателей: высокой скорости измерений, точности результатов благодаря использованию подвижных датчиков, огромному объему получаемой визуальной и цифровой информации. В настоящее время эти системы используют для массовых обмеров, разработки антропометрических стандартов и адресного проектирования одежды для индивидуальных фигур.

Хотя технологии сканирования белым светом и лазером довольно совершенны [1...3], существует единственная проблема, связанная с невозможностью снятия информации с невидимых (или непросмотренных) для сканирующих головок участков фигур. Причиной возникновения невидимых для сканирующих головок зон является их расположение под углом к внешней поверхности торса, рук и ног и недоступность внутренних поверхностей (рук, ног, под мышками, в паховой области). Чем меньше датчиков в бодисканере, тем большие значения углов будут образованы между их осями и поверхностью, тем больше будет площадь непросмотренных

участков (НУ), которая будет отображаться на виртуальной модели.

НУ лимитируют количество размеров, которые могут быть получены, вносят дополнительные погрешности и не гарантируют получения точной виртуальной модели фигуры или более сложной системы фигура — одежда [4]. Из-за них возникают сложности проектирования проекционных зазоров между фигурой и оболочкой одежды.

Целью настоящего исследования явилась разработка интеллектуальной технологии получения интегрированных целостных виртуальных фигур (ИЦВФ) после сканирования реальных фигур (РФ). Получение ИЦВФ создает условия для более глубоких исследований и дальнейшего импорта информации в среду САПР одежды. Под РФ в данной работе мы понимаем любой элемент и саму систему фигура – одежда.

Объектом исследования служили РФ женщин и их виртуальные фигуры (ВФ), получаемые после сканирования бодисканером белого света Telmat Optifit Pro-2. Система Telmat Optifit Pro-2 включала два датчика белого света Toshiba, расположенные спереди и сзади РФ (с увеличением количества датчиков до четырех и более площадь НУ уменьшается, но они не исчезают полностью).

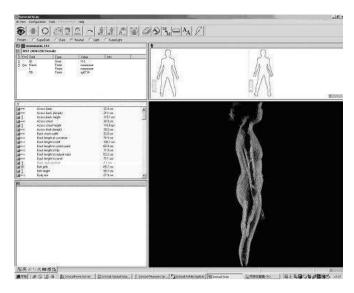


Рис. 1

Рис. 1 и 2 показывают интерфейсы программы Telmat после сканирования РФ. На рис.2 представлены НУ на боковой поверхности РФ (они выделены черным цветом). Помимо этих участков — на плечевом скате, внешней поверхности руки, бедра и голени — существуют аналогичные участки на внутренней поверхности ноги (на рис. 2 не видны).

Процесс преобразования информации происходил по схеме:

$$P\Phi \to B\Phi \to И \coprod B\Phi$$
.

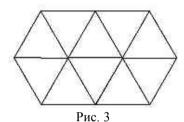
Датчики белого света собирают информацию о РФ в разных направлениях. Для исследования будут доступны только передняя и задняя поверхности РФ, а потому часть информации будет теряться ввиду отсутствия точек для сканирования в НУ.

Теlmat производит файлы сканирования типа (*.sacq) и (*.iv). Первый тип файла создан специально для Теlmat. Второй тип файла является общедоступным файлом общего использования, он может быть открыт в любой САПР, например, Imageware, "Грация".

Файл сканирования (*.iv) содержит координаты сканированных точек и информацию о поверхностях малого размера, которые получены из трех точек. Файл сканирования одной фигуры содержит информацию примерно о 170 000 точках. Все точки разделены на две группы для перед-

ней и задней частей фигуры. Координаты точек в файле расположены слева направо и сверху вниз. Файл (*.iv) содержит 4 части: координаты точек на передней поверхности РФ; информация об участках малых размеров; координаты точек на задней поверхности РФ; информация об участках малых размеров.

Для каждой сканированной РФ координаты каждой точки (x, y, z) вычисляются относительно центральной оси, проходящей через ее центр тяжести. Следующий фрагмент иллюстрирует первую часть файла (*.iv) для координат точек передней поверхности:


```
{ точка [
  6.5
            1594.3
                     65.3,
  6.5
            1593.9
                     64.4.
-10.3
            1593.5
                     62.8.
-10.8
            1593
                     60.3,
- 9.6
            1593
                     59.7.
-11.6
            1592.9
                     60.3.
-12.8
            1592.6
                     59.7.
 11.6
            1591.8
                    65.2,
. . . . . .
```

Следующие данные содержатся во второй части файла в виде закодированной информации об участках малых размеров:

```
81831, 81832, 81895, -1, 81860, 81861, 81923, -1, 82407, 82461, 82460, -1, 82461, 82514, 82513, -1, 82461, 82513, 82460, -1,
```

```
82513, 82514, 82562, -1, 82609, 82656, 82655, -1, 82655, 82656, 82703, -1, 82921, 82961, 82960, -1, 82960, 82961, 83000, -1,
```

В этом фрагменте файла мы можем видеть четыре величины в одной группе: первая, вторая, третья величины являются номерами точек, четвертая величина — это условный номер сегмента фигуры. Три точки составляют один сегмент поверхности. Рис. 3 показывает малые сегменты, контактирующие друг с другом, интегрируемые в целостную поверхность ВФ.

После изучения файла сканирования было установлено, что расстояние между двумя точками на линиях (обхватов, длин, ширин и др.) составляет 3 мм. Когда точки располагаются в НУ, расстояние между ними становится больше.

Новая программа разработана для усовершенствования ВФ и содержит два модуля: первый модуль определяет границы НУ, а второй — восстанавливает их. Первым шагом в разработке программы была идентификация координат и положения точек в НУ.

Программа автоматически вычисляет расстояние между двумя точками, а значение 5 мм было определено нами как предельная величина. Если расстояние между двумя ближайшими точками больше, чем 5 мм, то программа расценивает этот участок как НУ и нарушение целостности ВФ.

Эта часть программы автоматически сравнивает все точки согласно первоначальному порядку. Все точки, лежащие вокруг НУ, восстанавливаются и формируются в отдельный модуль с одновременной регистрацией порядковых номеров этих точек. Поэтому после восстановления

все точки могут быть поставлены на свои первоначальные места.

Модуль 1 описывает границы НУ в соответствии с рис.2, где они расположены между передней и задней поверхностями фигуры, и идентифицирует эти точки.

Алгоритм модуля 1://выделение границ НУ

Вход: Множество точек на поверхности фигуры после сканирования, которые обозначены как $sp=\{sp[0],sp[1],...,sp[n]\};$

Результат: Множество точек на левой и правой боковых поверхностях, которые обозначены как $lb=\{lb[0],lb[1],...,lb[n]\}$ и $rb=\{rb[0],rb[1],...,rb[n]\}$;

```
Начало
   Инициализация контура і=0;
   pp=sp[i],cp=sp[i+1];
   put pp int lb;
   сделать
   { Если расстояние между рр и ср боль-
ше лимитированного
   { поместить pp в lb;
   поместить ср в rb; }
   i=i+1;
   pp=cp;
   cp=sp[i];
   }до тех пор, пока i=n
   поместить ср в rb;
   вернуть lb,rb;
   Выход
```

Границы передней и задней частей ВФ фиксируются и соединяются вместе. Во время соединения программа должна соединить две точки, лежащие на одной линии обхвата. Поэтому координаты этих точек на том же обхвате служат для идентификации их.

Модуль 2 предназначен для соединения граничных линий, принадлежащих различным поверхностям.

Алгоритм модуля 2: // соединение двух поверхностей

Вход: Множество краев, которые обозначены как $e=\{e[0],e[1],...,e[n]\}$, $e[i]=\{e[i][1], e[i][2], e[i][n]\}$, e[i][j] точки выборки, которые в свою очередь обозначены как $e[i][j]=\{x, y, z\}(x,y,z$ координаты точки p[i]);

```
Начало
для (int i=0;i<n;i++)
```

for (int j=0;j<n;j++) {p=0;q=0;

пока расстояние между проектируемыми точками на координате x-y e[i][0] и e[j][0] больше лимитированного

 $\{if\ e[i][p].y\ больше\ чем\ e[j][q].y\ p=p+1;\ eщe\ q=q+1;\}$

начало соединения е[i],е[j] }

Выход

Анализ алгоритмов имеет следующие особенности:

для алгоритма 1 — сложность вычисления для O(n), где n — количество точек выборки на поверхности; для алгоритма 2 — лучшие условия вычисления для $O(n_2)$, худшие условия вычисления для $O(mn_2)$, средние условия вычисления для $O(mn_{2/2})$, где n_2 обозначает номер граничной линии, m — средняя точка на граничной линии.

Эти два алгоритма являются основным содержанием программы. Соединение различных поверхностей происходит поразному: например, для внешней поверхности руки порядок соединения будет сверху вниз, для внутренней поверхности руки порядок соединения будет снизу вверх.

Когда ВФ будет реконструирована, то можно автоматически прочитать информацию о каждом участке и вычислить координаты всех точек. Затем тысячи малых участков интегрируются в законченную ИЦВФ на мониторе.

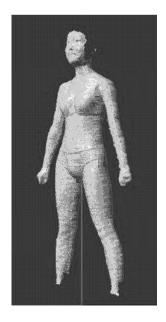


Рис. 4

Пример преобразования ВФ в ИЦВФ с помощью этой программы показан на рис. 4. Если сравнить рис. 3 и рис. 4, то на последнем рисунке уже не видно НУ на всех боковых участках рук и ног. Аналогичные результаты нами получены и при реконструкции НУ моделей одежды с разной объемно-силуэтной формой.

Новая программа применима для всех участков фигур и одежды, может быть интегрирована в любую 3D сканирующую систему, если известны структура файла сканирования и база данных, и позволяет улучшить процесс трехмерного проектирования одежды с учетом реальной пластики поверхности. Автоматическая программа усовершенствует систему 3D файла, формируемого после просмотра, и преодолевает трудности, с которыми сталкиваются аппаратные средства САПР одежды при использовании результатов сканирования.

ВЫВОДЫ

- 1. Создана специальная программа для автоматического изучения файла сканирования Telmat (Optifit Pro-2), реконструкции виртуальной фигуры с параллельной автоматической идентификацией и получения интегрированных целостных виртуальных фигур в системе фигура одежда.
- 2. Разработанное программное обеспечение может быть использовано в любых технологиях сканирования, оно также предназначено для исследований по изучению формообразования одежды на человеческой фигуре и ее трехмерного проектирования.

ЛИТЕРАТУРА

- 1. http://www.symcad.com.
- 2. http://www.lectra.com.
- 3. http://www.tc2.com.
- 4. Yu Yong-wen. The 3D Body Measurement And Fit Apparel, Textile Transaction, Vol.20:3, 156-159.

Рекомендована кафедрой конструирования швейных изделий ИГТА. Поступила 30.01.09