ОПРЕДЕЛЕНИЕ НАТЯЖЕНИЯ ОСНОВЫ В ПРОЦЕССЕ ПРИБОЯ

В.И. ТЕРЕНТЬЕВ, И.Ю. КАЗАНСКАЯ

(Московский государственный текстильный университет им. А.Н. Косыгина)

Силовое взаимодействие берда с нитями основы в процессе перемещения утка состоит из 2-х этапов [1]: 1 — движение уточной нити относительно основных, которое характеризуется минимальным увеличением натяжения основы; 2 — движение уточной нити совместно с опушкой ткани, которое характеризуется максимальным увеличением натяжения основы. Начало этого движения считается началом прибоя уточной нити к опушке ткани. Для станков

СТБ второго поколения, исходя из лабораторных испытаний для хлопчатобумажных тканей, проведенных в СКТБ ТМ (г.Чебоксары), получена величина прибойной полоски ℓ_{π} =5 мм.

Для многозевных ткацких машин экспериментального образца пневматической ткацкой машины СТП-190 по данным ВНИИЛТекмаша ℓ_n =3 мм и ℓ_n =5 мм соответственно (табл. 1 — параметры заправки скоростных ткацких машин).

Таблица 1

Тип станка	Наименование параметров						
	угол при- боя, град.	величина прибойной	величина заступа, град.	угол зева, град.			
				передней части зева		задней части зева	
		полоски, мм		γ'_1	γ"1	γ'_2	γ " ₁
СТБ	0	05,0	2565*	2,75	2,75	1,03	1,03
СТП	021,3	05,0	1020*	2,56	2,56	1,09	1,09
TMM (MTM)	0	03,0	030*	-	-	ı	-

 Π р и м е ч а н и е. * – значения углов зева указаны для данной величины заступа.

Считаем, что в процессе прибоя концы основных нитей у опушки ткани кинематически связаны с бердом. В связи с этим можно принять, что скорость конца нити во время прибоя равна скорости зуба берда, контактирующего с ней. Учитывая размеры прибойных полосок, закон изменения скорости можно приближенно принять линейным [4].

$$\begin{cases}
V = V_0 - \beta t, \\
\chi = \frac{V_0}{t_{\text{inp}}},
\end{cases}$$
(1)

$$\lambda_{\Pi} = \int_{0}^{t_{\rm mp}} (V_0 - \beta t) dt, \qquad (2)$$

где t — время одного оборота главного вала; V — скорость точки зуба берда в процессе прибоя; V_0 — скорость точки зуба берда, контактирующего с нитью, в момент начала прибоя:

$$V_0 = 0.5\beta_{\text{max}} \frac{\pi}{\phi_{\text{m}}} \omega_{\text{K}} \left(\sin \pi \frac{\phi_{\text{i}}}{\phi_{\text{m}}} - 0.5\sin 2\pi \frac{\phi_{\text{i}}}{\phi_{\text{m}}} \right) R_{\delta}; \quad (3)$$

 $t_{\text{пр}}$ — время прибоя; $\omega_{\text{к}}$ —угловая скорость подбатанного вала; $R_{\text{б}}$ — расстояние от линии касания бердом опушки ткани до оси кулачкового вала привода батана; $\phi_{\text{п}}$ — угол поворота главного вала за период

прибоя.

Интегрируя (2), определим зависимость для деформации нитей основы при прибое

$$\lambda_{\Pi} = 0.5 V_0 t_{\Pi p} . \tag{4}$$

Уравнение, характеризующее движение скала x в процессе прибоя, имеет вид:

$$m\ddot{x} + \eta \dot{x} + kx = P_1(t), \qquad (5)$$

где m — масса системы скала; \ddot{x} , \dot{x} — ускорение и скорость скала; η — суммарный коэффициент вязкого сопротивления основы, ткани и системы скала; k — суммарный коэффициент жесткости основы, ткани и системы скала.

$$x = \frac{P_0}{mp_1(n^2 + p_1^2)} [p_1 - e^{-nt}(p_1 \cos p_1 t + n \sin p_1 t)],$$
 (8)

где $p_1=p\sqrt{1-\xi^2}$; $\eta=\xi p$; $p=\sqrt{\frac{k}{m}}$ — частота собственных поперечных колебаний системы заправки ткацкой машины; $\xi=\frac{\eta}{2\sqrt{km}}$ — безразмерный коэффициент затухания.

Учитывая размеры прибойных полосок, закон изменения нагрузки можно приближенно принять линейно возрастающим.

$$P_1(t) = P_0 \frac{t}{t_{\text{mp}}},$$
 (6)

где

$$P_0 = 0.5k_1V_0t_{mn}$$
 при $0 << t << t_{mn}$; (7)

 P_1 — возмущающая периодическая сила, вызываемая действием на заправку батанного механизма.

В соответствии с [2] получим решение уравнения (5):

В интервале $t_{np} << t << t_{on}$

$$P_1(t) = P_0 \frac{t}{t_{np}} - 2P_0 \frac{(t - t_{np})}{t_{np}}, \quad (9)$$

так как после перемещения берда в крайнее заднее положение опушка ткани занимает положение, близкое к исходному. Решение уравнения (5) в указанном интервале времени находим в виде:

$$x = \frac{P_0}{mp_1(n^2 + p_1^2)} \{ [p_1 - e^{-nt}(p_1 \cos p_1 t + n \sin p_1 t)] - 2(p_1 - e^{-n(t - t_{mp})}[p_1 \cos p_1 (t - t_{mp}) + n \sin p_1 (t - t_{mp})]) \}, (10)$$

где $t_{\text{оп}}$ – время, за которое осуществляется циклическая деформация опушки ткани.

В интервале $t_{\text{оп}} << t << t_{\text{ц}}$ натяжение основы в процессе прибоя равно заправочному натяжению (без учета влияния других механизмов ткацкой машины), $t_{\text{ц}}$ – время, за которое совершается один оборот главного вала машины.

Натяжение основы в процессе прибоя определится по уравнению

$$S(t) = S_0(t) + k_1(x_0 - x),$$
 (11)

где $S_0(t)$ — заправочное натяжение основы; k_1 — суммарный коэффициент жесткости; x_0 — изменение длины основы в заправке ткацкой машины, являющееся следствием воздействия периодической возмущающей силы, характеризующей работу батанного механизма; x — перемещение скала в процессе ткачества.

Примем в связи с малыми значениями, что х соответствует величине компенсированной длины основ в заправке.

В котором

$$x_0 = 0.5V_0t_{np}, 0 << t << t_{np}, (12)$$

$$x_0 = 0.5V_0(t - t_{np}), t_{np} << t << t_{on}$$
 (13)

являются изменением длины основы в заправке ткацкой машины вследствие воз-

действия берда батанного механизма на опушку ткани.

Следовательно, натяжение основы в процессе прибоя в интервале $0 << t << t_{mD}$:

$$S(t) = k_1 \left\{ 0.5 V_0 t_{\pi p} - \frac{P_0}{m p_1 (n^2 + p_1^2)} [p_1 - e^{-nt} (p_1 \cos p_1 t + n \sin p_1 t)] \right\}.$$
 (14)

В интервале $t_{np} << t << t_{on}$:

$$S(t) = k_1 \left[0.5V_0 t_{\pi p} - \frac{P_0}{mp_1(n^2 + p_1^2)} \{ [p_1 - e^{-nt}(p_1 \cos p_1 t + n \sin p_1 t)] - \frac{P_0}{mp_1(n^2 + p_1^2)} \{ [p_1 - e^{-nt}(p_1 \cos p_1 t + n \sin p_1 t)] - \frac{P_0}{mp_1(n^2 + p_1^2)} [p_1 \cos p_1 (t - t_{\pi p}) + n \sin p_1 (t - t_{\pi p})] \} \right].$$

$$(15)$$

В [3] получена следующая зависимость для определения натяжения основы в про-

цессе прибоя:

$$S = S_0 + \frac{A}{\ell} \ell_{\Pi} + \frac{2\sqrt{AT}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin 2\pi n \frac{\ell_{\Pi} V_{3B}}{\ell V_0}.$$
 (16)

Выполним расчет натяжения основы по уравнению (16) для исходных данных (ткань типа миткаль): A — коэффициент жесткости нити основы при растяжении в заправке ткацкой машины, A = 9000 cH/м; S_0 — заправочное натяжение, S_0 = 20 cH/н; ℓ — длина нитей основы в заправке ткацкой машины, ℓ = 2,52 м; ℓ_{π} — ширина прибойной полоски, ℓ_{π} = 0,005 м; T — линейная плотность нити, T = 25 текс; V_{3B} = 1340 м/с; V_0 — скорость встречи берда батана с опушкой ткани, V_0 = 1,58 м/с; n = 1, 2, 3 ...

После подстановки исходных данных получим S = 37,86 сH/н.

Расчет натяжения основы по уравнению (15) для указанных данных (машина СТБУ1-180) дает значение $S=42,23\ cH.$

Полученные результаты не противоречат друг другу. Натяжение основы, определяемое по формуле (16), вероятно, является средним по величине натяжением нити основы, имеющей длину, равную эквивалентной длине нити основы в заправке. ВЫВОДЫ

Предложена методика определения натяжения нитей в процессе прибоя на современных ткацких машинах, учитывающая компенсационные свойства системы скала, которые зависят от ее динамических параметров.

ЛИТЕРАТУРА

- 1. *Власов П.В.* Нормализация процесса ткачества. М.: Легкая и пищевая промышленность, 1982.
- 2. *Бидерман В.Л.* Прикладная теория механических колебаний. М.:Высшая школа, 1972.
- 3. *Мигушов И.И.* Обобщенная теория и основные вопросы приложений механики текстильной нити и ткани: Дис...докт. техн. наук. М., 1981.
- 4. *Гордеев В.А.* Динамика механизмов отпуска и натяжения основы ткацких станков. М.: Легкая индустрия, 1965.

Рекомендована кафедрой проектирования текстильных машин. Поступила 24.04.09.