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In conformity with standards НПБ 157-99 

[1] the fire-fighter’s clothing (FFC) possess-
ing dehydrating, thermo-insulating and fire-
proof properties is manufactured from lami-
nated composite materials supplied with de-
tachable thermo-insulating linings. The lin-
ings are fabricated using 2 layers of a woollen 
needle-punched non-woven textile fabric and 
because of their bulky dimensions have lim-
ited applications. In order to increase the 
thermo-insulating properties of the basic FFC 
outfit it is suggested to introduce an internal 
stratum of a knitted material. In this case the 
best choice is the warp-knitted material made 
of flax yarns, as it is characterized by an equal 

extensibility in all directions and add some 
ergonomic properties to this outfit. In their 
turn the flax fibres possess high thermo-
insulating and heat-resistant properties en-
hanced by the cellular porous structure of the 
knitted fabric. In the critical zones, i.e. in the 
places of contact with the heated objects (as a 
rule they are shoulder girdle, chest, thighs, 
knees), the knitted stratum can be fortified by 
tightening the structure or introducing the 
weft yarns. Apart from this the yarns pro-
duced from flax wastes are rather inexpen-
sive. 

In order to design such an outfit we must 
calculate thermal conductivity of the sand-
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wich shell taking into consideration thermo-
insulating properties of the fibres, structure of 
the knitted material, heat released by a man, 
external thermal field. Such problem can be 
solved using the equations of thermal conduc-
tivity employing the method of finite ele-
ments. 

The shell being designed as well as a hu-
man figure can be regarded as axis-symmetric 
and the problem can be solved in a polar co-
ordinate system (Fig. 1). 

There is a well-known Laplace’s equation 

[2] for determining the thermal conductivity  
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where   is the Laplacian; T – the tempera-
ture; r and z are the polar coordinates. 

The problem is given for a variety of ele-
ments l consisting of the regions with bounda-
ries S; Dirihle boundary conditions on a 
boundary segment will be: 

 
Т = 36.6 С, z = 0, 
Т = 200 С, z = H 

 
and the Neuman conditions for the rest of the 
boundary will be: 
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36.6° C here is the temperature of a human 
body within the shell, 200°C – the most likely 
temperature of the radiant heat flux outside 
the shell. 

The problem is solved with the help of the 
equivalent variation formulation whereby the 
solution T (r, z) coincide with certain function 
I (r, z) which is minimized with the help of 
the functional 
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where  T r,z


 is the function defined from the 

admissible variety of sampling functions 
specified for the surface S. The continuous 
functions having first piecewise continuous 
derivatives and satisfying the above said 
boundary conditions are considered as admis-
sible. These conditions will comprise a set of 
control functions and dependences known 
from heat engineering: 
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where λr, λz, λrz are the heat conductivity coef-
ficients: 
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q is the intensity of the heat flow passing 
through the boundary; t – the time factor, δ – 
the thickness of the material; Q – the intensity 

of the internal sources of heat (heat released 
by a human body); ρc – the specific heat ca-
pacity of the material per a volume unit; αTb – 
the heat transfer coefficient and the ambient 
temperature in the boundary region; ε,Tu – the 
radiant heat-transfer coefficient and the radi-
ant temperature; ФQ(t), Фq(t), Фα(t), ФT(t), 
Фε(t), Фu(t) – the control functions, correlat-
ing with time variable and specified for 
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boundary segments for changing the boundary 
conditions; Sμ - sub-regions of different mate-
rials of region S under consideration; ζk - con-
tact voltages in the region of contact Lk. 

The thermal field is represented as a ma-
trix indicating the temperature in the nodal 
locations around the shell under study in polar 
coordinates (Fig. 1). The control functions are 
also defined as matrices. 

 

 
 

Fig 1. The calculated shell in the thermal field 
 
The whole region is subdivided into finite 

elements l in a six-chain form, in their shape 
and size similar to the element of a looped 
structure of the warp knitted fabric [3]. The 
subdivision of the region and continuity con-
ditions make it possible to write the func-
tional (3) as: 
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where i

eI  is the functional (3) for the finite 
element i with the number of nodes e. 

The typical e-element is shown in Fig. 2. 
 

 
 

Fig 2. Subdivision of the region into finite element ℓ 

The temperature within the shell under 
stationary heating conditions is determined by 
the ratio: 
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where e
intT  is the value of temperature in the 

mesh nodes (Fig. 2); ek  – the stiffness matrix 
of the element e comprised of the thermal 
conductivity coefficients [3], [4]. 

In line with the rules of the finite elements 
method, for the shell under study a global ma-
trix can be assembled from rows i and col-
umns j in compliance with the expressions 
(3), (4) and (5): 
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To calculate the thermal conductivity and 

design the distribution of the thermal fields 
within the shell a matrix mathematical system 
MatLab is employed. In programming of the 
design procedure the rows of matrix equation 
(6) corresponding to each node were succes-
sively calculated in accordance with expres-
sion (4). 

Let us consider as our example a sample 
of the material with a number of nodes 
15×15. The coefficient of thermal conductivi-
ty for flax yarn is 0.04, for cotton yarn – 0.05 
for the protective layer of FFC – 
0.3 W/(m·С). Let us assume that the thermal 
field is homogeneous T=200С and the con-
trol functions are constant, Q – 700 W/m², q – 
350 MJ/m², ρс – specific heat capacity of the 
material – 9.18·105

 J/m3
·С. Then the matrix 

equation of the system can be written as: 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 10 2 0 4 0 0 0 0 0 0 0 0

0 8 0 2 20 2 0 8 0 0 0 0 0 0 0

0 0 4 0 2 10 0 0 4 0 0 0 0 0 0

0 0 0 4 0 0 10 2 0 4 0 0 0 0 0

0 0 0 0 8 0 2 20 2 0 8 0 0 0 0

0 0 0 0 0 4 0 2 10 0 0 4 0 0 0

0 0 0 0 0 0 4 0 0 10 2 0 4 0 0

0 0 0 0 0 0 0 8 0 2 20 2 0 8 0
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T0 0 0 0 0 0 0 0 4 0 2 10 0 0 4 39,0

T0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 38,0

T0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 37,0

T0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 36,6
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Temperature within the shell curve is 

shown in Fig. 1. 
 

C O N C L U S I O N S 
 
Methods are suggested to evaluate the 

thermal conductivity of the sandwich textile 
shell subject to the surface area of the upper 
layer, thermo-insulating properties of each 
layer, external temperature field, contact and 
no-contact (irradiation) method of heat 
transfer, the internal heat source. 

The methods suggested can be 
implemented in designing the heat-proof 
properties of the fire-fighter’s clothing 
supplied with lining made from warp knitted 
flax fabric. 
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