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The yarn hairiness depends on the fibers on 
the outer layer of the yarn that do not directly 
adhere to the core. Some of them have an end 
in the core of the yarn gripped by other fibers, 
whereas others, because of the mechanical 
properties of the fiber (rigidity, shape, etc.) 
emerge to the surface. During the twisting of 
the yarn, other fibers are further displaced 
from their central position to the yarn surface. 

Yarn hairiness is therefore a complex con-
cept, which generally cannot be completely 
defined by a single figure. Hairiness can be 
considered as the fiber ends and loops stand-
ing out from the main compact yarn body. 
Beside other instruments, there are two major 
testing equipments available on the market 
used for evaluating the yarn hairiness. The 
most popular instrument is the Uster hairiness 
system, which characterizes the hairiness by 
H value, and is defined as the total length of 
all hairs within one centimeter of yarn. The 
hairiness H is an average value giving no in-
dication of the distribution of the length of 
hairs. The H value suppresses information as 
all averages do. The spectrogram of hairiness 
is also available. The second major instrument 
used is the Zweigle hairiness tester. The num-
bers of hairs of different lengths are counted 
separately. In addition the S3 value is given as 
the sum of the number of hairs 3 mm and 
longer. The information obtained from both 
systems is limited, and the available methods 
either compress the data into a single vale H 
or S3 or convert the entire data set into a 
spectrogram deleting the important spatial 
information.  

Modern USTER devices have possibility to 
give raw data about whole yarn hairiness. 
These data can be used for more complex 
evaluation of hairiness characteristics in the 
time and frequency domain. The yarn hairi-
ness can be described according to the: 

– periodic components; 
– random variation; 
– chaotic behavior. 
For these goals, it is possible to use sys-

tem based on the characterization of long term 
and short-term dependence of variance. The 
so-called Hurst exponent or fractal dimension 
can describe especially long-term depen-
dence.  

The yarn hairiness complex characteriza-
tion can be divided to the two phases. The 
core of pretreatment phase is creation of pow-
er spectral density (PSD) curve. Rough PSD 
estimator is based on the FFT i.e. the squared 
spectral amplitudes abs (Pk)2. 

The hairiness complexity can be classified 
according to the slope S of log(PSD) on the 
log(frequency): 

1. Fractional Gaussian noise fG for range 
1<S<0.38. In this case the fractal dimension 
from power spectrum can be used but vario-
gram is not suitable. 

2. Fractional Brownian motion fB for 
range 1.04<S<3. In this case the variogram 
can be used for estimation of fractal dimen-
sion as well. 

3. Transition case for range of S between 
0.38 and 1.04. For this case the cumulative 
sum of SHV should be created (transforma-
tion to the case 2). 
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4. No fractal behavior for cases when the 
power law model is invalid (in two decade 
range). For this case the chaotic models 
(broad bands) or ARIMA models (narrow 
peaks) have to be used. 

Special techniques for estimation of Hurst 
exponent and fractal dimension for the above-
mentioned cases can be used. The proposed 
approach is the core of HYARN program 
written in Matlab code. Application of this 
program for deeper characterization of se-
lected cotton type yarns was shown in [1]. 

In this contribution HYARN program is 
used for creation of H values empirical prob-
ability density function (PDF) and fitting this 
PDF by mixture of Gaussian distributions. 

PROBABILITY DENSITY FUNCTION 
OF H. As an estimator of the empirical prob-
ability density function histogram with con-
stant or variable bins (number of bins is M) is 
often constructed. Smooth kernel type density 
estimator is natural generalization of histo-
gram.  

Histogram is piecewise constant estimator 
of sample probability density. Histogram 
height in jth class bounded by values (tj-1, tj) 
is calculated from the relationship 

 

N j 1 j
H

j

C (t , t )
f (x)

N h


 , 

 
where the function CN(a, b) denotes the num-
ber of sample elements within interval <a, b> 
and j j j 1h t t    is the length of the j-th in-

terval. Now, the problem encountered is the 
choice of boundary values {tj} j=1,...M, the 
number of class intervals M and their lengths 
hj with respect to the histogram quality. In our 
programs the simple data based two-stage 
technique is used. In the first stage the num-
ber of class intervals 

 
0,4M int[2,46 (N-1) ]  

 
is computed. Here int[x] is integer part of 
number x. 

In the second stage the individual lengths 
hj are determined. The estimation of hj is 
based on the requirement of equal probability 
in all classes. For this purpose the empirical 

quantile function Q(P) based on the order sta-
tistics x(i) is used. 

In practice the P-axis is divided into iden-
tical intervals having the size of 1/M. For 
these intervals the corresponding quantile es-
timates tj = x(j/M) are constructed by using the 
relation 
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where P = j/M. Practical experiences have 
hitherto proven that this construction is suita-
ble even for strongly skewed sample distribu-
tions.  

The kernel type nonparametric estimator 
of sample probability density f(x) can be con-
structed on the basis of Lejenne-Dodge-
Kaelin procedure [1]. The final estimator has 
the form 
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Selection of kernel function K[x] and 

computation of bandwidths hi is described in 
[1]. 

In the case of bimodal distribution the 
mixture of Gausians is often a good model. 
We used two Gaussian mixture model in the 
form 

2 2

i i
G i

(x B1 (x B2
f (x ) A1exp A2exp

C1 C2

    
      

   
, 

 
where A1, A2 are proportions of smaller hai-
riness (first Gaussian having index 1) or high-
er hairiness (second  Gaussian having index 
2). Parameters B1 and B2 are mean H values 
for individual component and parameters C1, 
C2 correspond to standard deviations. 

To obtain the coefficient estimates (A1, 
A2, B1, B2, C1 and C2), the least squares me-
thod minimizing the summed square of resi-
duals is used. The residual for the ith data 
point ri is defined as the difference between 
the observed response value and the fitted re-
sponse value  

 

i H i G ir f (x ) f (x )  . 
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The summed square of residuals is given by 
 

N
2
i

i 1

S r


 , 

 
where N is the number of data points included 
in the fit and S is the sum of squares error es-
timate. Assumption leading to the minimiza-
tion of S is given in the book [1]. 

Model of two Gaussians mixture is nonli-
near regression model.  

Nonlinear models are more difficult to fit 
than linear models because the coefficients 
cannot be estimated using simple matrix tech-
niques. Instead, an iterative approach is re-
quired.  

The MATLAB toolbox used in HYARN 
provides these algorithms:  

– Trust-region -- This is the default algo-
rithm. It can solve difficult nonlinear prob-
lems more efficiently than the other algo-
rithms and it represents an improvement over 
the well-known Levenberg-Marquardt algo-
rithm.  

– Levenberg-Marquardt -- This algorithm 
has been used for many years and has been  
proved  to work most of the time in a wide 
range of nonlinear models and starting values.  
If the  trust-region  algorithm does not pro-
duce a reasonable fit, and there are no coeffi-
cient constraints, the Levenberg-Marquardt is 

good starting algorithm.  
More information about these algorithms 

is given in the book [1]  
EXPERIMENTAL PART AND 

METHOD OF EVALUATION. Experimental 
Part: Three cotton combed yarn of count 14.6 
tex (Ne 41) were produced on Rieter com4, 
Sussen   , and Zinser    compact spinning ma-
chines. The in-feed roving and row material 
characteristics were constant for all yarn 
types. The main fiber properties are as fol-
lows: staple length 30.1 mm, fiber fineness 
1.8 dtex (micronaire 4.6 /inch), fiber tenaci-
ty 30 cN/tex, and Short fiber index SFI 7.3. 
Furtheremore one open-end of tex 20, and a 
ring spun yarn of tex 15.2 were considered. 
All of these yarnes were tested on Uster tester 
4 for yarn hairiness at 400 m/min for one 
minute. The results are as follows: Rieter yarn 
has mean hairiness H= 3.6, Suessen yarn has 
H=3.9, and Zinser yarn has H=3.41. The ring 
spun yarn has H= 5.05, and the OE –rotor 
yarn H=4.35.  

METHOD OF EVALUATION. The 
individual readings of yarn hairiness were 
extracted from Uster 4 unevenness tester .The 
raw data of hair diagram were fed to a 
program (HYARN) written in MatLab for 
comlex evaluation of yarn hairiness.   
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Fig. 1. Hairiness diagram a) Rieter, b) Suesen c) Zinser, d) Ring spun and e) OE-rotor yarns 

 
 
RESULTS AND DISCUSSION. In the 

first part of our discussion we shall consider 
the distribution of hair for all types of yarns to 
find out if the distribution of the hairiness is a 
typically bi-modal distribution or only typi-
cally for some types of yarns. It was proven 
that parameter H comprise bimodal distribu-
tion for all yarns and this distribution can be 

well approximated by mixture of two Gaus-
sians distributions. In the Fig. 2 the histo-
grams for four sub samples (division of data 
for 400 meter yarn into 100 meter pieces) are 
given. It is clear that in all cases the bimodali-
ty is markedly appeared. The histograms of 
full samples are given in the Fig. 3. 
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Fig. 2. Hairiness index H distribution for four subsamples 

a) Rieter, b) Suesen c) Zinser, d)Ring Spun, and e) OE-Rotor yarn 
b)  
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Fig. 3. Hairiness index H distribution for whole samples  

a) Rieter, b) Suesen c) Zinser, d) Ring Spun and e) OE-Rotor yarn 
 
At this point we shall limit our discussion 

to compare in details the fine differences be-
tween the compact yarns produced on differ-

ent machines. The best fit by mixture of two 
Gaussians is in the Fig. 4. 

 
 

   
a b c 

 
Fig. 4. Best fit of mixture of two Gaussians model a) Rieter, b) Suesen c) Zinser 
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The very good approximation for all cases is 
clearly visible. Parameter estimates of mixture 

of two Gaussians model obtained by nonlinear 
least squiares are given in the Table 1. 

 
 

Table 1. Parameter estimates of mixture of two Gaussians model 
Yarn A1 B1 C1 A2 B2 C2 
Rieter 0,4335 2,752 0,5521 0,369 4,113 0,8643 
Sussen 0,3696 2,973 0,6578 0,3323 4,479 0,948 
Zinser 0,4406 2,589 0,5282 0,3754 3,87 0,8734 

 
 
It is interesting that differences between 

individual yarns are small but the yarn Zinser 
has biggest portion of smaller H and smaller 
mean values. Therefore the presence of long 
hairs will be probably low. Bimodality of H 
distribution has influence on majority of pa-

rameters computed for spatial characterization 
of hairiness as well because standard assump-
tion is unimodality or strict normality. Illus-
trations are in the Fig. 5 autocorrelation func-
tions in the Fig. 6. 
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Fig. 5. Autocorrelation function a) Rieter, b) Suesen c) Zinser 
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Fig. 6. Cumulative periodogram a) Rieter, b) Suesen c) Zinser 

 
 

The assumption of white noise (blue lines 
on cumulative periodogram cannot be natu-
rally accepted. Bimodality of H parameter 
distribution has many practical consequences. 
First of all the mean value used in Uster out-
puts is bad estimator because it lies between 
two peaks on H parameter distribution. Proper 
way in this case is to evaluate parameters of 

mixture of two Gaussians and use two mean 
values for hairiness characterization. On the 
other hand, the modus will be better for de-
scription of bimodality. Appearance of two 
various H distributions can be connected to 
two types of hairiness, but this hypothesis 
needs practical verification. 
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C O N C L U S I O N 
 

The distribution of H parameter characte-
rizing the overall hairiness for cotton yarns is 
bimodal. This event has huge influence on the 
majority of parameters characterizing spatial 
behavior of hairiness process. It will be ne-
cessary to prove bimodality for yarns having 
various fineness, compositions and systems of 
spinning before deciding about replacement 
of Uster mean value by more characteristics. 
This method facilitates complex characteriza-
tion of yarn hairiness more deeply, differen-
tiating hairiness distribution in two parts, 
short and long hairs.  
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