№ 1 (330) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2011

УДК 677.051.173

СРАВНИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ ВАЛИЧНЫХ ЗОН ЧЕСАНИЯ НА МАЛОГАБАРИТНОЙ ЧЕСАЛЬНОЙ МАШИНЕ В СОСТАВЕ АЧВ-5

COMPARATIVE RESEARCH OF ROLLER CARDING ZONES AT A SMALL-SIZED CARDING MACHINE COMPOSED OF ACHV-5

E.H. ГОЛУБЕВА, В.М. ЗАРУБИН, Н.Ф. ВАСЕНЕВ E.N. GOLUBEVA, V.M. ZARUBIN, N.F. VASENEV

(Ивановская государственная текстильная академия) (Ivanovo State Textile Academy)

E-mail: n.vasenev@gmail.com

В статье определены оптимальные заправочные параметры модернизированной чесальной машины одинарной валичной зоны чесания (ВЗЧ.01), входящей в состав АЧВ-5 по выработке нетканого полотна. Работа выполнена в производственных условиях действующего предприятия. Рекомендованные оптимальные заправочные параметры внедрены в производство.

Optimum fettling parametres of the modernised carding machine with single roller carding zones (VZCH.01) are defined herein within ACHV-5 (AYB-5) line for nonwoven material production. The work has been executed under production conditions of an operating enterprise. The recommended optimum fettling parametres have been introduced in production.

Ключевые слова: валичная зона чесания, одинарные валики, оптимизация заправочных параметров, нетканые материалы.

Keywords: roller carding zone, single rollers, optimisation of fettling parametres, nonwoven materials.

Технологические отходы текстильной промышленности и вторичные материальные ресурсы составляют около 25% всего перерабатываемого в мире сырья. Это огромные резервы, которые можно использовать для производства текстильных изделий. Кризис сырья, существующий в мировом текстильном производстве, заставляет комплексно подходить к его использованию и внедрять безотходную тех-

нологию. В настоящее время предприятия легкой промышленности перерабатывают вторичное текстильное сырье в пряжу, ткани, прокладочные пошивочные материалы, материалы для обивки мебели; предприятия строительных материалов — в напольные покрытия, теплозвукоизоляционные материалы, кровельный картон и строительные плиты; предприятия целлюлозно-бумажной промышленности — в кар-

тон и бумагу. Вторичное текстильное сырье используют также для изготовления упаковочных и обтирочных материалов, материалов для автотракторного строифильтровальных материалов. тельства, Потребность российского рынка в нетканых материалах постоянного растет. Ежегодный прирост объема выпуска нетканых полотен различного назначения составляет 10...15%. Рациональное и эффективное использование текстильных технологических отходов и вторичных материальных ресурсов приводит к экономии сырья и материалов, а следовательно, и экономической прибыли [1].

В студенческом конструкторскоисследовательском бюро (СКИБ) ИГТА разработана зона чесания, состоящая из одинарных (ВЗЧ.01) [2], из двойных (ВЗЧ.02) и из тройных валиков (ВЗЧ.03).

В условиях ПТФ №3 ОАО ХБК "Шуйские ситцы", г. Фурманов Ивановской области, были проведены испытания чесальных машин с разными вариантами зон чесания.

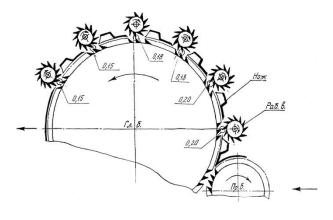


Рис. 1

Технологическая схема валичной зоны чесания (ВЗЧ.01) показана на рис. 1. Обработанный приемным барабаном волокнистый материал поступает в зону чесания главный барабан — валики. Между рабочими валиками и главным барабаном происходит разделение клочков волокна на бо-

лее мелкие и отдельные волокна. Между рабочими валиками установлены ножи, которые способствуют снятию волокнистой массы с валиков. Так как на барабан непрерывно поступают новые клочки волокон, в зоне взаимодействия валиков с барабаном происходит разделение комплексов волокон и их перемешивание.

Была проведена оптимизация (ВЗЧ.01) и в результате экспериментов определены значения основных уровней факторов в стационарной области функции отклика и интервалы варьирования факторов I_j, которые приведены в табл. 1 [3].

Таблица 1

	У	ровни	Интер-	
Факторы	варь	ирова	вал	
	-1	0	+1	I_j
X_1 – частота вращения				
рабочих валиков, мин -1	5	10	15	5 мин ⁻¹
X_2 – разводка между ножом				
и рабочим валиком, мм	0,15	0,20	0,25	0,05 мм
X_3 – разводка между ра-				
бочим валиком и главным				
барабаном, мм	0,2	0,25	0,3	0,05 mm

Для описания стационарной области проведен ротатабельный центральный композиционный эксперимент по матрице, которая представлена в табл. 2.

В качестве параметров оптимизации были выбраны: модальная длина волокна Y_1 , штапельная длина волоко в прочесе Y_3 , коэффициент вариации по штапельной длине Y_4 .

Для решения поставленной задачи регрессионную многофакторную модель и параметры оптимизации рассчитывали на ЭВМ по методу наименьших квадратов. В результате реализации опытов и статистической обработки результатов эксперимента на ЭВМ получены уравнения регрессии, адекватные с 95%-ной доверительной вероятностью:

Таблица 2

№ п/п	Факторы			v	v	Va	Параметры			
	X_1	X_2	Х3	X_1	X_2	Х3	Y _{1,} MM	Y_2 , MM	Y3, %	Y _{4,} %
1	-	-	-	5	0,15	0,2	18,4	25,2	33,8	41,0
2	-	0	-	5	0,2	0,2	18,8	25,3	31,8	40,1
3	-	0	+	5	0,2	0,3	18,7	25,7	30,7	38,3
4	-	0	0	5	0,2	0,25	17,7	24,5	34,0	42,2
5	+	+	+	15	0,25	0,3	18,5	24,8	26,0	36,9
6	+	0	-	15	0,2	0,2	18,1	24,7	28,0	38,0
7	+	0	+	15	0,2	0,3	18,9	25,6	29,0	37,4
8	+	0	0	15	0,2	0,25	19,1	25,7	28,4	36,8
9	0	0	0	10	0,2	0,25	18,0	24,9	35,9	39,3
10	0	+	+	10	0,15	0,2	19,0	25,8	25,6	37,5
11	0	0	ı	10	0,2	0,2	18,7	25,2	25,9	36,5
12	0	-	0	10	0,15	0,25	18,1	24,6	32,0	39,4
13	+	-	+	15	0,15	0,3	18,2	25,2	37,0	39,8
14	0	-	-	10	0,15	0,2	19,0	25,4	29,6	27,2
15	-	-	0	5	0,15	0,25	19,6	25,8	31,1	35,4
16	+	-	ı	15	0,15	0,2	18,1	24,7	23,8	37,3
17	-	-	+	5	0,15	0,3	18,7	25,9	29,6	36,4
18	0	-	+	10	0,15	0,3	18,4	25,0	31,4	39,6
19	+	-	0	15	0,15	0,25	18,9	25,0	31,0	35,4
20	-	+	ı	5	0,25	0,2	17,5	24,2	32,4	38,8
21	-	+	0	5	0,25	0,25	18,5	25,3	27,4	39,2
22	0	+	ı	10	0,25	0,2	18,1	24,8	25,8	38,0
23	0	+	0	10	0,25	0,25	19,0	25,6	27,8	37,0
24	+	+	ı	15	0,25	0,2	19,7	26,0	31,4	39,7
25	+	+	0	15	0,25	0,25	18,0	24,7	30,2	38,5
26	-	+	+	5	0,25	0,3	18,8	25,7	35,8	38,9
27	0	0	+	10	0,2	0,3	18,0	25,1	27,9	41,4

$$\begin{split} Y_{1pacq} &= 18,00 + 0,100X_1 - 0,017X_2 + 0,044X_3 + 0,089X_1X_1 + 0,158X_1X_2 + 0,139X_2X_2 - 0,011X_3X_3, \\ Y_{2pacq} &= 25,1 + 0,050X_1 - 0,033X_2 + 0,144X_3 + 0,028X_1X_1 + 0,133X_1X_2 - 0,022X_2X_2 + 0,078X_3X_3, \\ Y_{3pacq} &= 27,9 - 2,206X_1 - 0,767X_2 + 0,411X_3 + 1,361X_1X_1 + 1,050X_1X_2 - 0,256X_2X_2 - 1,289X_3X_3, \\ Y_{4pacq} &= 41,1 - 0,817X_1 + 0,489X_2 + 0,650X_3 + 1,017X_1X_1 - 0,125X_1X_2 - 1,333X_2X_2 + 0,150X_3X_3. \end{split}$$

В представленных математических моделях все коэффициенты регрессии значимы, а сами модели адекватны.

Принимая во внимание каждый из вышеперечисленных параметров оптимизации, определены оптимальные заправочные параметры валичной зоны чесания (ВЗЧ.01): частота вращения рабочих валиков 5 мин⁻¹, разводка между ножом и рабочим валиком 0,15 мм, разводка между рабочим валиком и главным барабаном 0,3 мм. В результате штапельная длина волокна составила 18,7 мм; модальная длина волокна — 25,9 мм; процент содержания ко-

ротких волокон в прочесе 29,6 %; коэффициент вариации по штапельной длине 36,4%.

В табл. 3 представлен сравнительный анализ валичных зон чесания в составе AЧВ-5.

Проведен сравнительный анализ качественных показателей прочеса, полученного с чесальных машин с валичной зоной чесания — одинарные валики, с валичной зоной чесания — двойные валики и шляпочной зоной чесания.

		На входе чеса	льной машин	Ы	На выходе чесальной машины				
Зона чесания	чество	110 MM	штапельная длина волок- на, мм	коэф- фициент вариации по штапельной длине, %	1	модальная длина волок- на, мм	штапельная длина волокна, мм	коэф- фициент вариации по шта- пельной длине, %	
Шля- почная	33,7	17,0	23,8	39,4	32,4	17,6	24,9	39,7	
ВЗЧ.02	29,5	17,2	23,7	40,2	28,3	18,4	25,4	38,7	
ВЗЧ.01	33,1	17,3	25,4	36,4	29,6	18,7	25,9	36,4	

ВЫВОДЫ

- 1. Исследованы заправочные параметры чесальных машин с валичными зонами чесания, входящих в состав АЧВ. Определены зависимости влияния частоты вращения рабочих валиков, разводки между ножом и рабочим валиком и разводки между рабочим валиком и главным барабаном. Проведена оптимизация заправочных параметров чесальной машины с валичной зоной чесания одинарные валики.
- 2. Процент содержания короткого волокна в прочесе меньше, а модальная и штапельная длина выше на выходе из чесальной машины с валичной зоной чесания одинарные валики, по сравнению с прочесом с чесальных машин со шляпочной зоной чесания и валичной зоной чесания двойные валики.

3. Чесальные машины с валичной зоной чесания — одинарные валики можно использовать в составе АЧВ-5 и вырабатывать нетканые материалы хорошего качества.

ЛИТЕРАТУРА

- 1. Петканова Н.Н., Урумова Д.Г., Чернев В.П. Переработка текстильных отходов и вторичного сырья. М.: Легпромбытиздат, 1991. С.3...4.
- 2. А.с. № 1288212. СССР. Узел чесания валичной чесальной машины / Зарубин В.М. и др. Опубл. 1987. Бюл. №5.
- 3. Севостьянов А.Г., Севостьянов П.А. Моделирование технологических процессов: Учебник для вузов. М.: Легкая и пищевая промышленность, 1984.

Рекомендована кафедрой механической технологии текстильных материалов. Поступила 10.11.10.

№ 1 (330) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 2011