УДК 677

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА АЭРОДИНАМИЧЕСКОГО СЪЕМА ОСТАТОЧНОГО СЛОЯ ВОЛОКОН С ЗУБЬЕВ ГАРНИТУРЫ ПРИЕМНОГО БАРАБАНА

В.В. КАПИТАНОВ, И.Ю. ЛАРИН, Я.М. КРАСИК, Н.Н. КЛЕМИН, Н.А. МИНОФЬЕВА

(Ивановская государственный архитектурно-строительный университет)

Известно, что присутствие остаточного слоя на гарнитуре приемного барабана приводит к образованию пороков в прочесе. Например, в [1...3] приведены конструкции аэродинамических устройств, Работа которых направлена на снижение загрузки приемного барабана остаточным слоем. С целью теоретического изучения работы этих устройств ниже рассматривается механика аэросъема комплекса волокон с зубьев гарнитуры вращающегося пильчатого барабана и приводятся уравнения движения комплекса волокон на рабочей грани зуба гарнитуры.

Схема расположения окна съема относительно горизонтального уровня приведена на рис 1. Пусть O_6 — центр барабана. Введем неподвижную систему координат $O_6 x_{\text{неп}} y_{\text{неп}}$ с центром на оси барабана. Угловую координату θ будем отсчитывать против часовой стрелки. Пусть радиус барабана равен R_6 , высота зуба гарнитуры — h, а угол при вершине зуба гарнитуры обозначим через β . Полагаем, что барабан

вращается с частотой n, а угловая скорость барабана — ω .

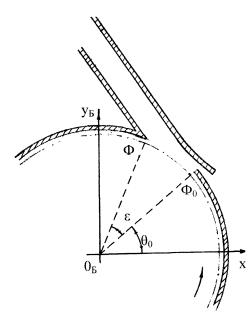


Рис. 1

Начальную точку на дуге съема обозначим через Φ_0 , а конечную – Φ . Угловое положение точки Φ_0 определяется значением величины θ_0 (рис. 1). Величину угла $\angle \Phi_0 O_5 \Phi$, заключающего дугу съема, обо-

значим через ϵ . Тогда длина дуги, вдоль которой происходит аэросъем , равна ϵR_{δ} .

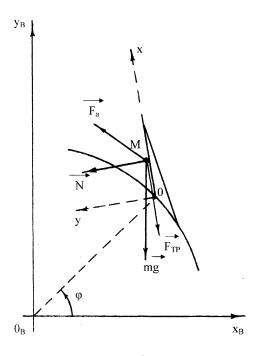
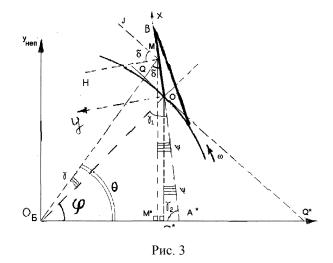


Рис. 2

Комплекс волокон массой т располагается на зубе гарнитуры (рис. 2 — схема действия сил на комплексе волокон). Центр масс комплекса волокон находится в точке М. Положение точки М характеризуется радиусом $\mathbf{r} = |\mathbf{O}_6\mathbf{M}|$ и угловой координатой $\mathbf{\theta}$. Далее будем полагать, что точка М находится на рабочей грани зуба. Такое предположение не приведет к каким-либо заметным расхождениям между точным и приближенным решениями задачи, однако позволит упростить математические выкладки при анализе механики движения комплекса. Пусть координата точки М обозначается далее через х.

Обозначим скорость комплекса вдоль рабочей грани зуба через \vec{v} , а ускорение вдоль этой же грани через \vec{a} . Тогда движение комплекса волокон согласно второму закону Ньютона моделируется следующим векторным уравнением:


$$\label{eq:madef} m\vec{a} = \vec{G} + \vec{F}_{\text{Tp}} + \vec{N} + \vec{F}_{\text{a}} + \vec{F}_{\text{nep}} + \vec{F}_{\text{kop}} \,,$$

где \vec{G} — сила тяжести ; $\vec{F}_{\text{тр}}$ — сила трения; \vec{N} — сила нормального давления; $\vec{F}_{\text{пер}}$ —

переносная сила инерции; $\vec{F}_{\text{кор}}$ — кориолисова сила; \vec{F}_{a} — аэродинамическая сила.

Вершину зуба на рис. 2 обозначим через B . Так как угол при вершине зуба гарнитуры равен β , то угол наклона рабочей грани зуба $\alpha = 0.5\pi - \beta$.

С целью получения зависимостей для расчета проекций сил, действующих на комплекс волокон на отрезке от основания зуба до его вершины (вдоль рабочей грани зуба), обратимся к рис. 2. Продолжим прямую ВМ до пересечения с осью координат $O_6 x_{\text{неп}}$ в точке A^* . Из точки М опустим перпендикуляр на ось координат $O_6 x_{\text{неп}}$. Он пересечет эту ось в точке M^* . Обозначим величину угла M^*MA^* через γ_1 , а величину угла O_6A^*O через γ_2 . Из точки М восстановим перпендикуляр МН к оси координат Ох (рис 3 – к расчету сил, действующих на комплекс при его аэросъеме с зуба гарнитуры).

Из $\Delta O_6 OA^*$ находим, что

$$\gamma_1 = \angle O_6 OA^* = 0.5\pi - \alpha = \beta$$
,
 $\gamma_2 = \angle O_6 A^* O = \pi - \beta - \varphi$.

Обозначим угол между прямыми ${\rm MM}^*$ и ${\rm MA}^*$ через ψ . Из точки O (рис.3) опустим перпендикуляр на ось ${\rm O}_6{\rm x}_{\rm hen}$. Он пе-

ресечет ее в точке O^* . Отметим, что величина $\angle M^*MA^*$ равна величине $\angle O^*OA^*$.

Из того, что $\Delta \text{O}^* \text{OA}^*$ – прямоугольный, следует

$$\psi = 0.5\pi - \gamma_2 = 0.5\pi - \pi + \beta + \phi = \beta + \phi - 0.5\pi \; .$$

Обозначим через δ величину $\angle O_{\delta}MA^*$. Из $\Delta O_{\delta}MA^*$ находим, что

$$\delta = \pi - \theta - \gamma_2 = \pi - \theta - \pi + \beta + \phi = \beta + \phi - \theta.$$

Проведем касательную к окружности барабана в точке O (рис.3). Эта касательная пересечет прямую O_6M в точке Q, а ось $O_6x_{\text{неп}}$ в точке $-Q^*$. Очевидно ,что угол QOO_6 — прямой, а величина отрезка OQ определяется из ΔMOQ по теореме синусов (принимая во внимание , что по условию задачи $\angle QOM$ — угол наклона рабочей грани зуба гарнитуры):

$$\frac{|OQ|}{\sin \delta} = \frac{x}{\sin(\pi - \delta - \alpha)}.$$

При составлении последнего соотношения учитывался факт, следующий из ΔOMQ , что величина $\angle MQO = \pi - \delta - \alpha$. Имеем

$$|OQ| = \frac{x \sin \delta}{\sin(\delta + \alpha)}.$$

Так как $\Delta O_6 OQ$ — прямоугольный и $|O_6 O|$ = R_6 , то

$$tg\gamma = \frac{|OQ|}{|O_6O|} = \frac{x \sin \delta}{R_6 \sin(\delta + \alpha)}.$$

Следовательно,

$$\gamma = \arctan\left[\frac{x \sin \delta}{R_{\delta} \sin(\delta + \alpha)}\right].$$

ВЫВОДЫ

Получены основные соотношения для математического моделирования механики комплекса волокон на рабочей грани зуба гарнитуры вращающегося пильчатого барабана.

ЛИТЕРАТУРА

- 1. Патент США, № 3574144.
- 2. Патент США, № 3553791.
- 3. Патент Франции, № 1255061.

Рекомендована кафедрой прядения. Поступила 02.12.05