УДК 677.021.178.2:004-9

МЕТОДИКА РАСЧЕТА ВЫСОТЫ СТОЛБА ЗАСОРЕННОЙ ВОЛОКНИСТОЙ СМЕСИ В ШАХТЕ БУНКЕРНОГО ПИТАТЕЛЯ

А.С. МКРТУМЯН, А.Г. ХОСРОВЯН, Я.М. КРАСИК, Г.А. ХОСРОВЯН

(Ивановская государственная текстильная академия)

При проектировании и расчетах технологического процесса в системах бункерного питания недоучет засоренности как фактора может влиять на расчетное значение высоты слоя волокон в бункере. Ниже решается задача о соотношении между высотой столба волокон в бункере, характеристиками питающей смеси и давлением в распределительном канале в условиях, когда засоренность продукта такова,

что в расчетах ее величиной нельзя пренебречь.

Расчеты показывают, что увеличение засоренности поступающего продукта ведет к уменьшению высоты слоя волокон в бункере при обеспечении необходимого значения линейной плотности настила. Причина этого явления заключается в том, что, обладая собственным весом, сорная составляющая смеси оказывает собственное силовое сжимающее воздействие на волокнистый продукт в смеси. Причем чем выше засоренность смеси , тем заметнее отличие высоты столба малозасоренной смеси от высоты столба высокозасоренной.

Пусть в бункерный питатель поступает засоренный волокнистый продукт. Высота заполнения шахты равна h. Пусть а – расстояние между передней и задней стенками бункера, b – ширина бункера, а р – давление воздуха в распределительном канале.

Ранее в [1] было получено дифференциальное уравнение, моделирующее процесс бункерного питания засоренной волокнистой смесью. Решение этого уравнения представляется следующей базовой аналитической зависимостью для плотности продукта на нижнем уровне бункера:

$$\rho == \rho_{np} \left\{ \frac{k}{\alpha Y - k} \left[1 - \exp(-Ah) \right] + 1 \right\} + \frac{kp}{Yg} \left[2 - \exp(-Ah) \right],$$

где $A=\alpha-Y^{-1}k$; $Y=1-y_3$; $\alpha=2\mu f(a+b)/(ab)$; $\rho_{\pi p}$ — плотность поступающей в бункер засоренной волокнистой смеси; g — ускорение свободного падения; k — коэффициент сжимаемости волокнистого продукта, учитывающий изменение его плотности при изменении давления; y_3 — засоренность в долях единицы; μ — коэффициент поперечного распора (отношение давления волокнистого продукта на стенки бункера к давлению, сжимающему слой в вертикальном направлении); f — коэффициент трения волокнистого продукта о стенки бункера.

Отметим, что выведенная зависимость при Y=1, то есть в том случае, когда величина засоренности мала и ею можно в расчетах параметров столба волокна пренебречь, совпадает с результатами, приведенными в [2].

Выведем зависимость для определения высоты заполнения шахты бункерного питателя засоренным волокнистым продуктом. Примем во внимание, что в реальных условиях величина засоренности $y_3 <<1$. Следовательно, $Y^{-1} = 1 + y_3$.

Введем следующие обозначения:

Q(h) = exp (- Gh), G=
$$\alpha$$
 -k ,s₁ =k/(α - k) ,
s₂ = α / (α - k) , s₃ = k h,

$$s_4 = 1 - \exp(-Gh), s_5 = \exp(-Gh) s_3,$$

 $s_6 = s_2 s_4 - s_5 = s_2 - (s_2 - s_3)Q, s_7 = 1 + s_4 - s_5.$

Тогда очевидно, что существуют следующие зависимости:

$$A = G - ky_3, \quad 1-exp(-Ah) = s_4 - s_5 y_3,$$

$$\frac{k}{\alpha Y - k} [1 - exp(-Ah)] \cong s_1(s_4 + s_6 y_3),$$

$$kpg^{-1}Y^{-1}[2 - exp(-Ah)] \cong kpg^{-1}(1 + s_4 + s_7 y_3),$$

Следовательно,

$$\rho \cong \rho_{\pi p} \, (1 + s_1 \, s_4 + \, s_1 \, s_6 \, y_3) + \, kpg^{-1} \, (\, 1 + \, s_4 \, + \, + \, s_7 \, y_3)$$
 .

Обозначим через ρ_B плотность волокнистой составляющей смеси, поступающей в бункер, а через ρ^* – плотность продукта на нижнем уровне бункера при y_3 =0.

Так как

$$\rho_{\rm np} = \frac{\rho_{\rm B}}{1 - y_{\rm 3}} \approx \rho_{\rm B} (1 + y_{\rm 3}),$$

то, обозначая $K_p = kp/(\rho_B g)$, имеем

$$\begin{array}{l} \rho \; \cong \; \; \rho_{\scriptscriptstyle B} \left[\left(s_1 \, s_4 {+} 1 \right) + K_p \left(\; 1 {+} \, s_4 \; \right) \right] {+} \\ + \, \rho_{\scriptscriptstyle B} \left(\; 1 {+} s_1 \, s_4 + s_1 \, s_6 \, + K_p \, s_7 \; \right) y_3 \; . \end{array}$$

Обозначим

$$c_s = 1 + s_1 (s_4 + s_6) + K_p s_7,$$

 $c_{nt} = 1 + s_1 s_4 + K_p (1 + s_4).$

Следовательно,

$$\rho = \rho^* + \rho_B c_S y_3 = \rho_B (c_{nt} + c_S y_3)$$
.

Отсюда, в частности, следует, что

 $(\rho - \rho^*)/\rho_p = c_s y_2.$

$$\rho_{\text{внс}} = \rho_{\text{в}} \left\langle \left\{ \frac{k}{\alpha Y - k} \left[1 - \exp(-Ah) \right] + 1 \right\} + K_{\text{p}} \left[2 - \exp(-Ah) \right] \right\rangle.$$
шение следующей зада- очистке волокон динейна

Рассмотрим решение следующей задачи. Пусть бункер загружен волокнистым продуктом с плотностью рвнс1 и засоренностью у₃₁. В этом случае высота столба равна h₁ при уровне давления в распределительном канале p_1 .

Полагаем, что далее по технологической цепочке волокнистый продукт подвергается очистке, и в результате линейная плотность конечного продукта становится равной T_{k1} .

Допустим, что происходит смена питающего бункер продукта и изменение качественных характеристик этого продукта заключается в том, что засоренность стала равной узг. При этом ставится задача – сохранить плотность волокнистой составляющей продукта на самом нижнем уровне бункера с тем, чтобы при дальнейшей

очистке волокон линейная плотность конечного продукта T_{k2} была неизменной, то

$$T_{k1} = T_{k2} .$$

При перезагрузке бункера волокнистый продукт имеет плотность $\rho_{\text{вис}2}$, а высоту столба $-h_2$ при уровне давления в распределительном канале p_2 .

Таким образом,

$$\begin{split} \rho_{\text{BHc1}} &= \rho_{\text{BHc2}} \; \; ; \qquad Y_1 = 1 \text{-} y_{31} \; \; , \\ A_1 &= \alpha - Y_1^{-1} k \; , \; K_{p1} = k p_1 \; / \; (\rho_{\text{B}} g); \\ Y_2 &= 1 \text{-} y_{32}, \quad A_2 = \alpha - Y_2^{-1} k \; , \\ K_{p2} &= k p_2 \; / (\rho_{\text{B}} g) \; \; . \end{split}$$

Тогда в первом случае имеем

$$\rho_{\text{BHcl}} = \rho_{\text{B}} \left\langle \left\{ \frac{k}{\alpha Y_1 - k} \left[1 - exp(-A_1h) \right] + 1 \right\} + K_{p_1} \left[2 - exp(-A_1h) \right] \right\rangle,$$

а во втором:

$$\rho_{\text{bhc2}} = \rho_{\text{b}} \left\langle \left\{ \frac{k}{\alpha Y_2 - k} \big[1 - exp(-A_2h) \big] + 1 \right\} + K_{p_2} \big[2 - exp(-A_2h) \big] \right\rangle.$$

Следовательно, параметры системы в первом и во втором случаях связаны между собой следующим образом:

$$\left\{ \frac{k}{\alpha Y_1 - k} \left[1 - \exp(-A_1 h) \right] + 1 \right\} + K_{p_1} \left[2 - \exp(-A_1 h) \right] = \\
= \left\{ \frac{k}{\alpha Y_2 - k} \left[1 - \exp(-A_2 h) \right] + 1 \right\} + K_{p_2} \left[2 - \exp(-A_2 h) \right].$$

Полученные зависимости носят общий характер. Упрощение полученного соотношения с учетом того, что $y_3 << 1$, дает следующую зависимость:

$$\begin{array}{l} . \quad s_1 s_4(h_1) + K_{p1} [\ 1 + s_4(h_1)] + \\ + [s_1 \quad - K_{p1}] \ s_5(h_1) \ y_{31} = \\ = s_1 s_4(h_2) + K_{p2} [\ 1 + s_4(h_2)] + \\ + [\ s_1 - K_{p2} \] \ s_5(h_2) \ y_{32} \ , \end{array}$$

или

$$\begin{array}{l} s_1 \left[s_4(h_2) - s_4(h_1) \right] + K_{p2} \left[\ 1 + s_4(h_2) \right] - \\ - K_{p1} \left[1 + s_4(h_1) \right] = \left[s_1 - K_{p1} \ \right] s_5(h_1) \ y_{31} - \\ - \left[\ s_1 - K_{p2} \ \right] s_5(h_2) y_{32} \ . \end{array}$$

Так как

$$s_1[s_4(h_2) - s_4(h_1)] = s_1[1 - Q(h_2) - 1 + Q(h_1)] = s_1[Q(h_1) - Q(h_2)],$$

TO

$$\begin{array}{c} s_1[\ Q(h_1) - Q(h_2) \] + K_{p2}[\ 1 + s_4(h_2)] - \\ - \ K_{p1}[1 + s_4(h_1)] = [\ s_1 - K_{p1} \] \ s_5(h_1) \ y_{31} - \\ - \ [\ s_1 - K_{p2} \] \ s_5(h_2) y_{32} \ . \end{array}$$

Таким образом, получено соотношение, связывающее следующие величины :

$$y_{31}$$
, y_{32} , h_1 , h_2 , p_1 и p_2 .

Рассмотрим другую задачу, когда при изменении засоренности волокнистого продукта давление в распределительном канале постоянно. В этом случае

$$K_{p1} = K_{p2} .$$

Принимая во внимание постоянство давления, находим, что

$$\begin{split} K_{p2}[\ 1 + s_4(h_2)] - K_{p1}[1 + s_4(h_1)] = \\ = & K_{p1}[\ 2 - Q(h_2) \ - 2 + Q(h_1)] = \\ = & K_{p1}[\ Q(h_1) - Q(h_2)]. \end{split}$$

Так как

$$s_1[Q(h_1) - Q(h_2)] + K_{p2}[1 + s_4(h_2)] - K_{p1}[1 + s_4(h_1)] = [Q(h_1) - Q(h_2)](s_1 + K_{p1}),$$

то

$$[Q(h_1) - Q(h_2)](s_1 + K_{p1}) =$$
= [s_1 - K_{p1}][s_5(h_1) y_{31} - s_5(h_2)y_{32}].

Полученное уравнение должно быть решено относительно нового значения высоты волокнистого слоя в шахте h_2 .

ВЫВОДЫ

1.Получены зависимости для расчета величины высоты слоя засоренного волокнистого продукта в шахте бункерного питателя с учетом величины и качественного состава засоренности, давления в распределительном канале.

2. Выведены аналитические зависимости для различных вариантов технологического расчета процесса бункерного питания засоренным волокнистым продуктом.

ЛИТЕРАТУРА

1. Мкртумян А.С. и др. К расчету модели механики волокон в шахте бункера // Известия Ивановского отделения Петровской академии наук и искусств. Секция технических наук. – Иваново: ИГТА, 2006.

Рекомендована кафедрой механической технологии текстильных материалов. Поступила 30.01.06.