ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СТРОЕНИЯ НАВЕСКИ ЛЬНЯНОГО ТЕХНИЧЕСКОГО ВОЛОКНА

М.В. КИСЕЛЕВ, Р.В. КОРАБЕЛЬНИКОВ, Р.П. ВОЙЦЕХОВСКИЙ, Д.В.ГОЛУБКОВ, А.А. СМИРНОВ

(Костромской государственный технологический университет)

Для разработки математической модели технического льняного волокна был выбран метод конечных элементов [1], поэтому наибольший интерес, с точки зрения оценки прочности навески, был уделен двум геометрическим величинам — углам ориентации комплексов и количеству связей комплексов друг с другом.

Для определения данных величин была разработана оригинальная методика, построенная на основе компьютерной обработки графического изображения технического льняного волокна. Последовательность этапов методики исследования представлена в табл. 1.

Таблица 1

Номер этапа	Функциональное назначение этапа	Используемое программное обеспечение
1	Подготовка реальной навески	
2	Фотосъемка или сканирование навески	ПО сканера или цифровой ка- меры
3	Обработка растрового изображения навески (увеличение резкости, контрастности, наложение спецэффектов, приведение цветного изображения к черно-белому)	Adobe Fhotoshop, FhotoImpression, Panorama Maker
4	Векторизация растрового изображения навески	CorelDROW 12 или другой векторизатор
5	Конвертирование обработанного векторизованного изображения к формату файла, совместимому с ANSYS	SolidWorks 2001 Plus
6	Задание характеристик конечных элементов и разбиение графического векторизованного изображения на конечные элементы	ANSYS ver 6.1
7	Обработка массива данных после получения конечно-элементной модели	Оригинальное ПО
8	Статистическая обработка полученных результатов	NCSS 2001

Примеры реализации методики на различных этапах приведены на рис. 1, где

показаны результаты обработки после соответствующего этапа.

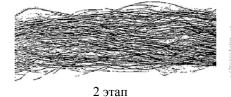
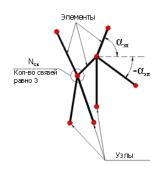
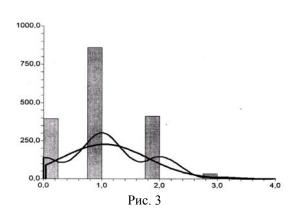


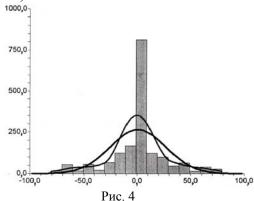
Рис. 1

4 этап

Количество связей комплексов волокон и углы их ориентации определялись в соответствии со схемой, изображенной на

рис 2, где $N_{\text{св}}$ — количество связей комплексов волокон в узле модели; $\alpha_{\text{эл}}$ — угол ориентации комплекса волокон в модели навески.


Рис. 2

Полученные результаты, обработанные по программе NCSS 2001 с целью определения закона распределения исследуемых величин, показали, что шесть из семи тестов на проверку закона распределения свидетельствуют о наилучшем совпадении с нормальным законом.

ВЫВОДЫ

Разработана методика определения характеристик строения льняного технического волокна в направлении установления Для реализации этапа 7 методики разработано специализированное программное обеспечение. Результаты статистической обработки навески льняного технического волокна в 30 повторностях (с помощью ППП NCSS 2001) представлены на рис 3 и 4 (рис. 3 – распределение количества связей комплексов элементарных волокон; рис. 4 – распределение углов ориентации комплексов элементарных волокон).

количества связей комплексов волокон и углов их ориентации, а также показано, что распределение исследуемых величин подчиняется нормальному закону.

ЛИТЕРАТУРА

1. RAO S.S. The finite elements in engenearing. – Pergamon Press., 1984.

Рекомендована кафедрой теории механизмов и машин и проектирования текстильных машин. Поступила 20.03.06.