УДК 677.017.622:532.546.3

ПОСТРОЕНИЕ МЕТОДА РАСЧЕТА ВОЗДУХОПРОНИЦАЕМОСТИ ВОЛОКНИСТОГО СЛОЯ С УЧЕТОМ ОРИЕНТАЦИИ ВОЛОКОН

И.П. КОРНЮХИН, И.В. КОЗЫРЕВ, Т.А. КОРНЮХИНА, С.А. МИРОНОВ

(Московский государственный текстильный университет им. А.Н. Косыгина)

Ранее в [1] было показано, что воздухопроницаемость волокнистого слоя зависит от его эффективной плотности и параметра ориентации. Сравнительно просто можно найти эту зависимость для разреженного (с позиций гидродинамики) волокнистого слоя. Согласно решению Ландау — Лифшица [2] ширина у следа (области в направлении течения х, где скорость заметно падает) за обтекаемым телом при ламинарном режиме определяется формулой:

$$y/x = 1/\sqrt{Re}, \qquad (1)$$

где Re = wd/v - число Рейнольдса; w - скорость потока жидкости (газа), набегающего на тело; <math>d -определяющий размер, диаметр цилиндра; v -кинематическая вязкость воздуха.

Если расстояние между волокнами в слое заметно превышает ширину следа, то слой можно считать разреженным, обтекание отдельных волокон в слое рассматривать как независимое, а суммарную силу, действующую на весь слой, можно определять суммированием по отдельным волокнам.

Дадим грубую оценку расстоянию между волокнами. Объем пористой среды, приходящийся на одно волокно, охарактеризуем как $V_1 = V/N$, где N- количество волокон в объеме V. В свою очередь, количество волокон оценим по объему V_f твердой фазы волокон $N = V_f/V_0$, V_0- объем одного волокна. Учтем, что пористость определяется, как

$$\varepsilon = 1 - V_f / V. \tag{2}$$

Из приведенных формул найдем, что $V_1/V_0 = (1-\epsilon)^{-1}$. Предположим, что окружающий волокно объем V_1 и само волокно имеют цилиндрическую форму с диаметрами D и d соответственно. При их одинаковой длине ℓ найдем $D^2/d^2 = (1-\epsilon)^{-1}$. При пористости $\epsilon \geq 0.9$, характерной для рассматриваемых случаев, найдем D/d > 3.

Принятое предположение, что окружающий волокно объем является цилиндрическим, ни в коей мере не следует рассматривать как строгое ограничение. Действительно, для извитого волокна та же самая связь между D и d будет прослеживаться на бесконечно малом его участке.

При значениях чисел Рейнольдса $Re\approx 1$, характерных для рассматриваемой задачи расчета воздухопроницаемости, из формулы (1) следует оценка $y/x\approx 1$.

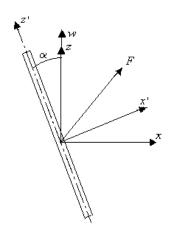


Рис. 1

Таким образом, при рассматриваемых значениях пористости влиянием следа за предшествующим волокном на закономерности обтекания следующего волокна можно пренебречь. В этих условиях под-

ход к расчету силы сопротивления волокнистого слоя, как суммы сил сопротивления, действующих на отдельные волокна, представляется оправданным.

Рассмотрим силу сопротивления, действующую на одиночный цилиндр в соответствии с подходом, представленным в [3]. На рис. 1 представлен отрезок волокна, наклоненный под углом α к заданному направлению движения, определяемому вектором скорости w потока и осью z. Результирующая сила F, действующая на волокно в потоке, может быть представлена геометрической суммой двух сил — силы сопротивления вдоль волокна, действующая по оси z', и поперечной, действующей по оси х' (рис. 1).

Согласно [3] силу F, действующую на цилиндр единичной длины, можно представить как:

$$F = \mu \kappa w$$
, (3)

где κ – диадик (трансляционный тензор II ранга) сопротивлений; μ – динамическая вязкость.

Составляющую силы сопротивления F вдоль оси z можно выразить [3] через коэффициенты сопротивления K_{\parallel} и K_{\perp} при обтекании цилиндра в направлении вдоль и поперек образующей соответственно:

$$F_{\alpha} = \mu w \left(K_{\perp} \sin^2 \alpha + K_{\parallel} \cos^2 \alpha \right),$$
 (4)

где в обозначении F_{α} подчеркивается, что волокно ориентированно под углом α к направлению движения.

Сила, действующая на волокна в направлении оси х, несущественна, так как она не дает вклада в сопротивление волокнистого слоя. К тому же благодаря симметрии углового распределения волокон суммарная сила, действующая на весь волокнистый слой в направлении оси х, будет пренебрежимо малой.

При поперечном обтекании круглого цилиндра неограниченным потоком жидкости при малых числах Рейнольдса в [4] получена формула для силы сопротивления, которая позволяет представить попе-

речную составляющую K_{\perp} в виде:

$$K_{\perp} = 8\pi \varphi r / [\ln(2\varphi) + 0.5].$$
 (5)

Для представления продольной составляющей в [3] рекомендуется уравнение, полученное при продольном обтекании неограниченным потоком также при малых числах Рейнольдса тела типа иглы, тонкого веретена:

$$K_{\parallel} = 4\pi \varphi r / [ln(2\varphi) - 0.5].$$
 (6)

В этих формулах $\varphi = \ell/(2r)$; $\ell -$ длина цилиндра; r - радиус цилиндра.

Обе эти формулы получены путем решения уравнений Навье — Стокса при обтекании указанных тел неограниченным потоком жидкости (газа).

В [5] получены значения коэффициентов K_{\perp} и K_{\parallel} при обтекании шероховатого цилиндра в пористой среде. Для того, чтобы воспользоваться этими рекомендациями, необходимо знать характеристики шероховатости каждого цилиндра.

Реально поперечное сечение подавляющего большинства волокон отлично от круглого, а характеристики шероховатости неизвестны, что не позволяет использовать указанные рекомендации. В связи с этим в уравнение (4) вместо K_{\perp} и K_{\parallel} вводятся их

эмпирические аналоги χ_{\perp} и χ_{\parallel} , которые будут определены при сравнении расчетного уравнения с опытными данными.

Таким образом, для представления силы сопротивления, действующей на волокна общей длины ℓ_o , ориентированные под углом α к оси, вместо уравнения (4) воспользуемся уравнением

$$F_{\alpha} = 2\pi\mu\ell_{\hat{1}} \ell(\alpha) w \left(\chi_{\perp} \sin^2 \alpha + \chi_{\parallel} \cos^2 \alpha\right). (7)$$

Здесь $\ell_0\ell(\alpha)$ — доля волокон, ориентированных под углом α к оси z (рис.1). Сомножитель 2 появляется в формуле (7) в связи с тем, что учитывается ориентация волокон под углом α и симметричных относительно оси участков волокон, ориентированных под углом π — α .

Функция плотности углового распределения $\ell(\alpha)$ описывается полученным ранее в [6] уравнением и воспроизводится ниже с формальной заменой параметра распределения λ параметром ориентации γ : $(\gamma \equiv \lambda)$:

$$\ell(\alpha) = \frac{1}{2} \frac{\gamma^2 \sin \alpha}{\sqrt{(\gamma^2 \sin^2 \alpha + \cos^2 \alpha)^3}}.$$
 (8)

Общая длина волокон ℓ_0 рассчитывается по массе волокнистого образца:

$$\ell_{o} = M/(\rho_{f}f_{f}); \quad \ell_{o} = \rho_{o}SL/(\rho_{f}f_{f}) = \rho_{o}\pi D^{2}L/(4\rho_{f}f_{f}) = \rho_{o}D^{2}L/(\rho_{f}d^{2}),$$
(9)

где M — масса волокна; ρ_f — плотность материала; f_f — площадь сечения волокна; $\rho_{\mathfrak{I}}$ — эффективная плотность, масса материала в образце, отнесенная ко всему объему; L — длина канала, в котором располагается волокнистый образец; S — площадь сечения канала; D — диаметр канала; d — диаметр волокна.

Для определения силы, действующей на образец с произвольной ориентацией волокон, получим интегральное выражение:

$$F = \int_{0}^{\pi} F_{\alpha} d\alpha . \tag{10}$$

Подстановка выражений (8) и (9) в формулу (7) с последующим интегрированием уравнения (10) согласно [7] дает уравнение для определения силы, действующей на волокна в направлении оси z (рис. 1) в зависимости от параметра ориентации:

$$F = 2\pi\mu w \frac{\rho_{\circ} SL}{\rho_f f_f} f(\gamma), \qquad (11)$$

где $f(\gamma)$ — функция, характеризующая ориентацию волокон, определяемую величиной вычисленного интеграла. При значениях $\gamma > 1$, характерных для случаев рас-

тяжения образца с отсутствием преимущественной ориентации в исходном состоя-

нии, функция $f(\gamma)$ имеет вид

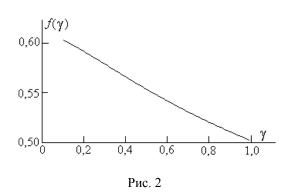
$$f(\gamma) = \chi_{\perp} + \left(\chi_{\parallel} - \chi_{\perp}\right) \frac{\gamma^{2}}{\left(\sqrt{\gamma^{2} - 1}\right)^{3}} \left[\sqrt{\gamma^{2} - 1} - \arcsin\frac{\sqrt{\gamma^{2} - 1}}{\gamma}\right], \tag{12}$$

при $\gamma < 1$ (сжатие образца) вычисление ин-

теграла в уравнении (10) согласно [7] дает

$$f(\gamma) = \chi_{\perp} + \left(\chi_{\parallel} - \chi_{\perp}\right) \frac{\gamma^{2}}{\left(\sqrt{1 - \gamma^{2}}\right)^{3}} \left[\sqrt{1 - \gamma^{2}} - \ln\frac{1 + \sqrt{1 - \gamma^{2}}}{\gamma}\right]. \tag{13}$$

Графики полученных функций f(γ) (12)



Падение давления Δp при прохождении потока воздуха через канал площадью сечения S при силе сопротивления F определяется выражением

$$\Delta p = F/S. \tag{14}$$

Сделав подстановку формулы (14) в уравнение (11) и приведя его к безразмерной форме, получим

$$\frac{\Delta p \rho_f f_f}{L2\pi\mu\rho_{\acute{y}} w} = f(\gamma). \tag{15}$$

В уравнение (15) входит средняя скорость движения воздуха в межволоконном пространстве w, связанная со скоростью w_0 , приведенной к полному сечению канала соотношением

$$w\varepsilon = w_0, \tag{16}$$

и (13) приведены на рис. 2 и 3.

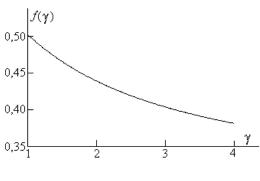


Рис. 3

где ε — пористость материала.

Уравнение (16) неявно предполагает равенство доли сечения свободного для прохода воздуха величине пористости, характеризуемой как доля пустот в образце

$$\varepsilon = \varepsilon_{\rm V} = \varepsilon_{\rm S},$$
 (17)

где ϵ_V — объемная пористость, определенная формулой (2); ϵ_S — пористость в сечении канала.

Продемонстрируем справедливость уравнения (17). Покажем, что определенная формулой (2) объемная пористость преобразуется к виду $\varepsilon_V = 1 - \rho_3/\rho_f$.

В соответствии с формулой (9) представим общую длину волокон в виде ℓ_o =L(1 – ϵ_V)D²/d², где d – диаметр волокна. Общее число волокон (каждое длиной ℓ) при этом будет равно Z= ℓ_o / ℓ =L(1- ϵ_V)D²/(ℓ d²).

Рассмотрим произвольное положение

волокна длиной ℓ , наклоненного к оси цилиндра под произвольным углом α в канале цилиндрической формы. Проекция такого волокна на ось цилиндра равна ℓ_1 = ℓ cos α , а площадь его поперечного сечения плоскостью, перпендикулярной оси цилиндра, составит $f_1 = f_f/\cos\alpha$.

Мысленно представим цепочку, со-

стоящую из одиночных волокон определенной ориентации, расположенной вдоль канала по длине L. Количество волокон в такой цепочке составит $z=L/(\ell_1)\equiv L/(\ell \cos\alpha)$. Таким образом, число волокон в поперечном сечении канала будет равно n=Z/z, а их суммарная площадь определится как $F_f=nf_1\equiv f_1Z/z$, или:

$$F_{f} = \frac{nf_{f}}{\cos \alpha} = \frac{D^{2}(1 - \varepsilon_{V})\cos \alpha}{d^{2}} \frac{\pi d^{2}}{4\cos \alpha} = \frac{\pi D^{2}}{4}(1 - \varepsilon_{V}). \tag{18}$$

Учитывая определение ε_S как доли пустот в сечении пористого тела ε_S =(S $-F_f$)/S= $\equiv (\pi D^2 - 4F_f)/(\pi D^2)$ и используя соотношение (18), завершим доказательство равенства (17).

Коэффициент проницаемости к пористого тела связан с приведенной скоростью воздуха в канале и градиентом давления законом Дарси:

$$\mathbf{w}_0 = \frac{\mathbf{k}}{\mu} \frac{\Delta \mathbf{p}}{\mathbf{L}} \,. \tag{19}$$

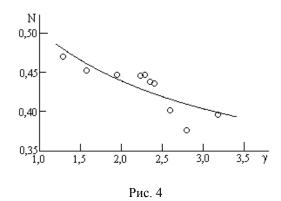
С учетом зависимостей (16), (17) и (19) выражение (15) примет следующий вид:

$$N = f(\gamma), \tag{20}$$

где безразмерный параметр N, характеризующий сопротивление проницаемости:

$$N = \frac{\rho_f f_f \varepsilon}{2\pi \rho_{\dot{\nu}} k} \ . \tag{21}$$

Уравнение (20) с учетом определений (12) и (21) сопоставлено на рис. 4 с опытными данными, полученными в [1].



Методом обобщенной линейной регрессии, реализованной в программе Math-CAD, были найдены значения коэффициентов χ_{\perp} и χ_{\parallel} , которые оказались равными $\chi_{\perp}=0,610$ и $\chi_{\parallel}=0,284$. Эти коэффициенты отличаются приблизительно в два раза. Заметим, что примерно такое же отношение характерно и для коэффициентов K_{\perp} и K_{\parallel} , определяемых формулами (5), (6) с учетом того, что $\phi>>1$.

Кроме того, полученные в [5] решения уравнения Бринкмана для случая обтекания шероховатого цилиндра в пористой среде, дают значения коэффициентов сопротивления в направлениях, перпендикулярном и параллельном оси, также отличающихся в два раза. Эти факты представляют собой косвенное подтверждение надежности предложенного метода.

ВЫВОДЫ

Разработан согласующийся с опытными данными метод расчета воздухопроницаемости слоя волокон в зависимости от его эффективной плотности и параметра ориентации.

ЛИТЕРАТУРА

- 1. *Корнюхин И.П. и др.* // Изв. вузов. Технология текстильной промышленности. -2006, №2. С.25...29.
- 2. *Ландау Л.Д.*, *Лифшиц Е.М.* Гидродинамика. М.: Наука, 1986.
 - 3. Хаппель Дж., Бренер Г. Гидродинамика при

малых числах Рейнольдса. - М.: Мир, 1976.

- 4. *Ламб Г*. Гидродинамика. М.: ОГИЗ, 1947.
- 5. Черняков \bar{A} .Л., \bar{K} ирш \bar{A} .A. // Коллоидный журнал. 2001. Т.63, № 4.
- 6. Kornoohin I.P., Kornoohina T.A. // Research Journal Textile and Apparel. (Hong Kong), V.6, №2, 2002
- 7. *Прудников А.П., Брычков Ю.А., Маричев О.И.* Интегралы и ряды. М.: Наука, 1981.

Рекомендована кафедрой промышленной теплоэнергетики. Поступила 19.01.06.