УДК 677.021

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ТРЕПАНИЯ, УЧИТЫВАЮЩАЯ ВОЗДЕЙСТВИЕ ПЕРЕДНЕЙ И ТЫЛЬНОЙ КРОМКИ БИЛА НА ОБРАБАТЫВАЕМЫЙ МАТЕРИАЛ*

Д.В. ИВАНЮК

(Костромской государственный технологический университет)

Известны зависимости [1] для определения сил натяжения и нормального давления на прядь, обрабатываемую в трепальных барабанах:

$$T_k = \mu V_r^2 + (T_o - \mu V_r^2) e^{k\phi} + \frac{\mu r Q_1}{\kappa} (e^{\kappa \phi} - 1), (1)$$

$$\label{eq:power_equation} \text{где} \quad Q_1 = \frac{dV_r}{dt} - W_n^e \, \text{sin} \xi_k - \kappa W_n^e \, \text{cos} \xi_k + \kappa W^\kappa \, ;$$

 μ — масса единицы длины пряди; V_r — относительная скорость движения пряди по кромке бильной планки; T_o — сила натяжения в набегающей на кромку ветви пряди; ϕ — угол охвата прядью кромки; κ — коэффициент трения; ξ_k — угол между биссектрисой угла охвата ϕ и прямой, проведен-

^{*} Работа выполнена под руководством проф., докт. техн. наук В.А. Дьячкова.

ной из центра барабана О к центру кривизны кромки била k; k — порядковый номер била, воздействующего на прядь от точки зажима пряди; W^e_n — нормальная составляющая переносного ускорения; W^k — Кориолисово ускорение.

Нормальная реакция кромки бильной планки N определится по формуле:

$$N=N'\mu r\phi_k,$$
 (2)

где N' – сила нормального давления пряди на кромку, отнесенная к единице массы пряди, соприкасающейся на дуге ф с кромкой радиуса r:

$$N' = \frac{T_o - \mu V_r^2}{\mu r} e^{\kappa \phi} + \frac{Q_2}{k} (e^{\kappa \phi} - 1),$$

где
$$Q_2 = \frac{dV_r}{dt} - W_n^e \sin \xi_k$$
 .

Зависимости (1) и (2) получены с допущениями, что в трепальном барабане каждая бильная планка воздействует на прядь только передней кромкой (то есть бильная планка имеет ширину, равную нулю). Реально в контакте с прядью может быть и тыльная кромка бильной планки, поэтому более точные результаты будет давать модель процесса трепания, в которой будут учитываться воздействие передней и тыльной кромки била на обрабатываемый материал. При этом величины ξ_k , T_o , V_r должны определяться по методике, изложенной ниже [2], [3].

В [2] получены выражения для определения углов охвата прядью передней и тыльной кромок бильных планок трепальных барабанов:

$$\phi_k = \pi - \arccos((b^2 + c^2 - a^2)/2bc),$$

где a, b, c – стороны треугольника, образованного по координатам: X_k , Y_k – передних и $X_{k'}$, $Y_{k'}$; $X_{k'+1}$, $Y_{k'+1}$ – тыльных кромок, взаимодействующих с прядью;

$$\varphi_{k'} = \pi - \arccos((b'^2 + c'^2 - a'^2)/2b'c'),$$

где a', b', c' — стороны треугольника, образованного по координатам: X_{k-1} , Y_{k-1} , X_k , Y_k — передних и $X_{k'}$, $Y_{k'}$ — тыльных кромок, взаимодействующих с прядью.

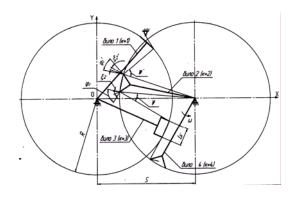


Рис. 1

На рис. 1 показана схема обработки пряди трепальными барабанами с бильными планками в виде уголка, пластины или швеллера. Здесь обозначено: v(v') — угол наклона пряди, набегающей на кромку планки k-го била, к линии, соединяющей центр барабана и центр кривизны передней k (тыльной k') кромки била; S — расстояние между осями барабанов.

Выразим биссектрисы углов охвата прядью передней и тыльной кромки.

Из треугольника, вершинами которого (рис. 1) являются кромки бильной планки k-го, k+1-го била и ось O с координатами Y_0 =0, X_0 =S, если k четное или X_0 =0, если нечетное:

для случая, когда прядь огибает переднюю кромку:

$$\xi_k = \frac{\pi}{2} - \frac{\phi_k}{2} - v$$
 (смотри [2]), (3)

$$\cos v = \frac{R^2 + b^2 - d^2}{2bR}$$
,

здесь d есть сторона треугольника, противолежащая углу v:

$$d = \sqrt{\left(X_{k'+1} - X_0\right)^2 + \left(Y_{k'+1} - Y_o\right)^2} \ ,$$

b — расстояние между передней кромкой бильной планки k-го и тыльной кромкой k+1-го била:

$$b = \sqrt{(X_{k'+1} - X_k)^2 + (Y_{k'+1} - Y_k)^2} ,$$

для случая, когда прядь огибает тыльную кромку:

$$\xi_{k'} = \frac{\pi}{2} - \frac{\phi_{k'}}{2} - v', \tag{4}$$

$$\cos v' = \frac{R^2 + b'^2 - d'^2}{2b'R},$$

$$d' = \sqrt{(X_{k-1} - X_0)^2 + (Y_{k-1} - Y_0)^2},$$

b' – расстояние между тыльной кромкой бильной планки k-го и передней кромкой k-1-го била:

$$b' \! = \! \sqrt{ \left(X_{k'} \! - \! X_{k-1} \right)^2 + \! \left(Y_{k'} \! - \! Y_{k-1} \right)^2 } \ .$$

Тогда после преобразований выражений (3) и (4) получим:

$$\begin{split} \xi_k &= \frac{\pi}{2} - \frac{1}{2} \arccos\!\left(\frac{b^2 + c^2 - a^2}{2bc}\right) - \arccos\!\left(\frac{R^2 + b^2 - d^2}{2bR}\right), \\ \xi_{k'} &= \frac{\pi}{2} - \frac{1}{2} \arccos\!\left(\frac{b'^2 + c'^2 - a'^2}{2b'c'}\right) - \arccos\!\left(\frac{R^2 + b'^2 - d'^2}{2b'R}\right). \end{split}$$

Выразим скорости относительного движения пряди на кромках:

$$V_{rk} = V_{rk'} = \frac{\Delta L_k}{\Delta t} = \omega \frac{\Delta L_k}{\Delta \alpha} .$$

Злесь

$$\Delta L_k = L_i - L_{i-1},$$

где L_{j-1}, L_j — длина совокупностей участков пряди между точкой ее зажима и передней кромкой k-го била при Δt =0 и на момент времени $\Delta t = \frac{\Delta \alpha}{\omega}$ (при повороте била на угол $\Delta \alpha$) соответственно; j — порядковый номер участка;

$$L_j = \sum L_k + n \times L'_k,$$

где $L_k = \sqrt{(X_k - X_{k'-1})^2 + (Y_k - Y_{k'-1})^2}$ есть длина участка между передней кромкой k-го била; L'_k — расстояние между передней и тыльной кромкой k-го била; n — количество участков n0 кромкой k-го била; n1 количество участков n2 кромки, на которой определяется скорость n3.

Очевидно, что:

n = k - для случая, когда относительная скорость определяется для передней кромки k-го била и оно контактирует с прядью обеими кромками;

n = k-1 - для тыльной кромки или передней кромки при контакте первого била с прядью только передней кромкой;

n = k-2 - для тыльной кромки при контакте первого била с прядью только передней кромкой.

Тогда с учетом сказанного выражения, описывающие силы, действующие на прядь при трепании, примут вид:

$$T_{\kappa} = \mu V_{r}^{2} + (T_{o} - \mu V_{r}^{2})e^{\kappa \phi} + \frac{\mu r Q_{1}}{\kappa}(e^{\kappa \phi} - 1),$$

где $T_o = T_{k'+1} + F_{ac}$; $F_{ac} -$ сила натяжения пряди от воздействия на нее сил аэродинамического сопротивления перемещению;

$$\begin{split} N_k &= N' \mu r \phi_k \,, \\ T_{\kappa'} &= \mu V_r^2 + (T_k - \mu V_r^2) e^{\kappa \phi} + \frac{\mu r Q_1}{\kappa} (e^{\kappa \phi} - 1) \,, \\ N_{k'} &= N'' \mu r \phi_{k''} \,. \end{split}$$

ВЫВОДЫ

ЛИТЕРАТУРА

Разработана математическая модель процесса трепания, в которой учитываются воздействия передней и тыльной кромок бильной планки на обрабатываемый материал. Полученная модель может применяться при проектировании трепальных барабанов — для расчета сил натяжения и нормального давления на прядь передней и тыльной кромками бильной планки.

- 1. Дьячков В.А. //Изв. вузов. Технология текстильной промышленности. -2002, №4-5.
- 2. Дьячков В.А,. Пасько С.И. // Изв. вузов. Технология текстильной промышленности. -2004, №1.
- 3. *Дьячков В.А.* Проектирование трепальных машин: Монография. Кострома: КГТУ, 2000.

Рекомендована кафедрой технологии производства льняного волокна. Поступила 02.02.06.